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ABSTRACT

Heterogeneous graphs are increasingly used to represent complex

relationships in schema-less data. Querying these graphs is a fun-

damental and critical task for many graph applications. While such

graphs are content-rich, they are difficult to use. In this work we

present techniques to help schema-agnostic users easily query such

large heterogeneous graphs. As an initial step towards making such

graphs more usable, we propose two systems: (1) GQBE, a system

which supports a new querying paradigm that queries such graphs

by example entity tuples, without requiring them to form complex

graph queries, and (2) VIIQ, an interactive visual query formula-

tion system that helps users construct exact query graphs. VIIQ

ranks the labels for manually added query graph components, and

also automatically recommends new edges to include in the query

graph, based on how likely they will be of interest to the user.

1. INTRODUCTION
There is an unprecedented proliferation of heterogeneous graph

data in our society today, that are useful for numerous applica-

tions, including search, recommendation, and business intelligence.

Graphs represent complex relationships in data with heterogeneous

and ever-changing schema, such as Freebase, DBpedia and YAGO.

Figure 1 is an excerpt of such a graph where nodes represent en-

tities and labeled edges represent relationships between entities.

Such graphs are often stored in relational databases, triplestores

and graph databases. Given such a large heterogeneous graph, be-

ing able to easily query it is a fundamental problem and a critical

task for many graph applications.

Both users and application developers are often overwhelmed

by the daunting task of understanding and using heterogeneous

graphs, due to the sheer size and complexity of such data. More

specifically, the challenges lie in the gap between complex data and

non-expert users. Query graphs and structured query languages

such as SQL, SPARQL, and those alike are often used to specify

the exact query intent for such data. However, formulating such

query graphs or structured queries require extensive experiences

in query language, data model, and a good understanding of par-

ticular datasets [4]. For instance, consider the scenario where a
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Figure 1: An Excerpt of a Heterogeneous Graph

computer historian is interested in preparing an article on Turing

Award winning American university professors who have also de-

signed a programming language. Formulating even a simple query

graph that captures this query intent (as shown in Fig. 2) requires

a commanding knowledge of the complex schema, and is difficult

for both novice and experienced users alike.

Motivated by the aforementioned usability challenges, my PhD

dissertation focuses on addressing the problem of improving the

query formulation capability of query systems for large hetero-

geneous graphs. Figure 2 shows the architecture of the proposed

framework. More specifically, we present two different techniques:

1) GQBE (Graph Query By Example), a system that supports a

new querying paradigm that queries graphs by example entity tu-

ples, instead of query graphs. GQBE lets schema-agnostic users

provide example tuples as input to obtain similar answer tuples as

output. The query graph discovery component shown in Fig. 2

automatically discovers a hidden query graph that tries to capture

the query intent behind the example query tuples, and 2) VIIQ

(Visual Interface for Interactive graph Query formulation), a sys-

tem that helps schema-agnostic users formulate query graphs spec-

ifying their exact query intent. The query canvas component of

VIIQ shown in Fig. 2, provides an interactive interface for users

to formulate their query graph in. VIIQ helps users in the query

formulation process by automatically making suggestions that are

ranked by how likely they are relevant to the user’s query intent 1.

GQBE [6, 7] is among the first to query heterogeneous graphs by

example entity tuples. Given a data graph and one or more exam-

ple query tuples consisting of entities, GQBE finds similar answer

tuples. Suppose the historian knows an example query tuple such

as 〈Donald Knuth, Stanford, TeX〉 that satisfies her query intent. The

1 Demonstration videos of GQBE and VIIQ can be found at
http://www.youtube.com/watch?v=4QfcV-OrGmQ and
https://youtu.be/el_w1vEvtoA respectively.
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Figure 2: Framework for Querying Heterogeneous Graphs

answer tuples can be 〈John McCarthy, Stanford, Algol〉 and 〈Barbara

Liskov, MIT, CLU〉, which are professor-university-language triples.

The user need not specify how various entities in the example tuple

are related. Instead, the system discovers a query graph that tries to

capture relationships that may be relevant to the query intent.

VIIQ, on the other hand, helps users easily formulate exact query

graphs. VIIQ provides a visual interface that enables users to easily

construct query graph components. To help schema-agnostic users

specify their exact query intent, VIIQ operates in passive and active

modes. By default VIIQ operates in passive mode. Based on the

partially constructed query graph, the system automatically sug-

gests top-k new edges that may be relevant to the user’s query in-

tent, without being triggered by any user actions. The active mode

is triggered when the user adds new nodes or edges to the partial

query graph. For a newly added edge, the suggested edge labels are

ranked based on the likelihood of their relevance to the user’s query

intent. The graph in Fig. 2 can be constructed iteratively with the

help of suggestions made by VIIQ. To the best of our knowledge,

VIIQ is the first visual query formulation system that makes ranked

suggestions to help users construct exact query graphs.

Once a query graph is formed, the query processing component

shown in Fig. 2 evaluates the query graph to find answers, which

are answer tuples for GQBE and answer graphs for VIIQ. The

feedback module in Fig. 2 presents these answers to the user to

obtain their feedback on the relevance of the results, and further

refine the query graph if necessary.

2. RELATEDWORK
Substantial progress has been made on query mechanisms that

help users construct query graphs or even do not require explicit

query graphs. Paradigms such as keyword-based query formula-

tion [11, 13], natural language questions [12], interactive and form-

based query formulation [2, 5], and approximate graph query [9]

require effort from users to convey the query intent. For instance,

using keyword-based methods, a user has to articulate query key-

words, e.g., “Turing award winning American professors and lan-

guages designed by them” for the aforementioned historian. Not

only a user may find it challenging to clearly articulate a query,

but also a query system might not return accurate answers, since

it is non-trivial to precisely separate these keywords and correctly

match them with entities, entity types and relationships. This has

been verified through our own experience on a keyword-based sys-

tem adapted from SPARK [10]. In contrast, a GQBE user only

needs to know the names of some entities in example tuples, with-

out being required to specify how exactly the entities are related.

Alternatively, paradigms such as keyword-based querying are more

useful when corresponding example tuples are unknown to the user.

Several graph query systems allow users to construct query graphs

through a visual interface [3, 1, 8]. But, since the focus of these sys-

tems is query processing, their query formulation components are

limited to only being a graphical platform to add nodes and edges

with ease using mouse and keyboard actions. Little help is offered

to easily choose the labels of various components in a query graph.

With large heterogeneous graphs, every time a new query compo-

nent is added, users are inundated with possibly hundreds of or

more options for the new component’s label, sorted alphabetically.

It is a daunting task to browse through all the options to select

the appropriate label to add. Existing systems help users specify

queries either easily or exactly, but not both. In contrast, VIIQ

helps users easily construct exact query graphs by ranking candi-

dates for newly added query graph components in active mode, and

automatically suggesting new relevant edges to include in the query

graph in passive mode, without any input from the user.

3. GRAPH QUERY BY EXAMPLE (GQBE)
GQBE lets users query large graphs by example entity tuples,

and Fig. 3 shows the user interface of GQBE. The search bar, as-

sisted by user interface tools such as auto-completion in identify-

ing the exact entities in the data graph, is used to enter the enti-

ties of an example tuple. To better communicate the query intent,

the ‘+’ button can be used to provide multiple query tuples. Since

the user is not required to specify how these entities are related,

the query graph discovery component of GQBE automatically de-

rives a maximum query graph (MQG) to approximately capture the

user’s query intent, which can be viewed by clicking the view maxi-

mum query graph button in Fig. 3. There can be a large space of ap-

proximate answer graphs since it is unlikely to find answer graphs

exactly matching the MQG. The query processing component mod-

els the space of answer graphs by a query lattice formed by the

subsumption relation between all possible subgraphs of the MQG.

A top-k lattice exploration algorithm that only partially evaluates

the lattice nodes in the order of their corresponding query graphs’

upper-bound scores is employed to evaluate the lattice. The ranked

answer tuples obtained are displayed as shown in Fig. 3, and their

corresponding matching answer graphs can be viewed by clicking

on the view answer graph button. Various algorithms and other

details of the query processor can be found in [7], while we only

provide a brief overview here.

MaximumQuery Graph Discovery: Edges are weighted to cap-

ture importance of relationships, using several distance-based and

frequency-based heuristics: The weight w(e) of an edge e=(u, v)

is 1) directly proportional to its inverse edge frequency, ief(e), that
captures how rare a relationship is in the data graph, 2) inversely

proportional to its participation, p(e), that determines the number

of edges in the data graph that share the same label and one of e’s

end nodes (u or v), and 3) inversely proportional to the distance,

d(e), that captures the distance of edge e from the query entities.

The MQG must be reasonably small while capturing important

relationships. A greedy heuristic is used to capture the MQG, since

the problem of finding such anm-edged graph containing all query

entities while maximizing the total edge weight is NP-hard [7].

Query Processing: In order to find approximate matches to the

maximum query graph,GQBEmodels the space of all answer graphs

as a query lattice formed by the subsumption relationship between

all subgraphs of the MQG. The top-most node in the lattice is the

MQG, and the bottom-most nodes are called minimal query trees

which are trees that connect all the query entities in the MQG. An

approximate answer graph is defined as an edge-isomorphic match

to some query graph (answer tuples are projected from these an-

swer graphs), which is a subgraph of the MQG, and is present in

the query lattice as a lattice node. We employ an upper-bound based

bottom-up, best-first strategy to explore the lattice. We start evalu-

ating from the minimal query trees, and always choose to evaluate

the node that has the best upper-bound, which is essentially the
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Figure 3: GQBE’s User Interface Figure 4: VIIQ’s User Interface

Query PCC Query PCC Query PCC Query PCC

F1 0.79 F2 0.78 F3 0.60 F4 0.80

F5 0.34 F6 0.27 F7 0.06 F8 0.26

F9 0.33 F10 0.77 F11 0.58 F12 undefined

F13 undefined F14 0.62 F15 0.43 F16 0.29

F17 0.64 F18 0.30 F19 0.40 F20 0.65

Table 1: Pearson Correlation Coefficient (PCC) betweenGQBE

and Amazon Mechanical Turk Workers, k=30
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Figure 5: Accuracy of GQBE and NESS on Freebase Queries

largest super-graph in the lattice. Every time a lattice node returns

no matching answer graphs, all of its super-graphs are pruned and

the lattice changes dynamically. The algorithm terminates when

the current score of the kth best answer tuple so far is greater than

the upper-bound score of the next best lattice node chosen by the

algorithm, whose correctness is guaranteed by a theorem [7] that

states that we cannot get any answer tuple better than the current

top-k by executing any other unevaluated node in the lattice.

Experiments: We evaluated GQBE (and VIIQ) using a prepro-

cessed Freebase data graph containing 28M nodes, 47M edges and

5,428 distinct edge labels. We evaluated 20 queries on this graph

and obtained the top-30 ranked answers from GQBE. User studies

were conducted with Amazon Mechanical Turk to study the qual-

ity of this ranking, using Pearson Correlation Coefficient (PCC). A

PCC value in the range 0 to 1 indicates a positive correlation with

users’ preferences. PCC is undefined when all entries in a list have

the same rank. Table 1 shows that GQBE attained a positive cor-

relation on 18 queries. We also compared the accuracy of GQBE

with NESS [9] using three measures: precision-at-k (P@k), mean

average precision (MAP), and normalized discounted cumulative

gain (nDCG). NESS is a graph querying framework that finds ap-

proximate matches of query graphs with unlabeled nodes which

correspond to query entity nodes in MQG. NESS does not con-

sider edge-labeled graphs, we adapted it by requiring each candi-

date node v′ of v to have at least one incident edge in the data graph

bearing the same label of an edge incident on v in the MQG. Fig-

ure 5 shows that GQBE outperforms NESS on all three measures.

4. INTERACTIVE QUERY GRAPH COM­

PLETION (VIIQ)
VIIQ helps users easily formulate query graphs specifying their

exact query intent. Figure 4 shows the user interface ofVIIQ, where

users can formulate query graphs on the query canvas, while var-

ious parameters of the system are tuned in the control panel. As

mentioned earlier, VIIQ supports two modes of operation, passive

and active. VIIQ operates in passive mode by default. Top-k edges

that may be relevant to the user’s query intent are automatically

suggested, without being triggered by any user actions. When the

user adds new nodes or edges on the canvas by simple mouse ac-

tions, VIIQ operates in active mode. A set of candidate labels C is

determined for query graph components during both modes of op-

eration. These candidate labels are ranked based on their relevance

to the user’s query intent and presented to the user.

In passive mode, based on the connected partial query graph on

the canvas, the system automatically suggests top-k new edges rele-

vant to the user. The new edges suggested are incident on the partial

query graph in the canvas, and connected to grey nodes as shown

in Fig. 4. The user can click on some grey nodes to add them to the

query graph, and ignore the others. The unselected grey nodes are

deleted with a mouse click on the canvas, and the next set of new

suggestions are automatically displayed. If none of the suggestions

obtained in passive mode are useful and the user does not select

any grey nodes, a new set of suggestions can be manually triggered

using the refresh suggestions button on the query canvas.

Users can click on the canvas to add a new node, and VIIQ

switches to active mode. A suggestion panel pops up when a new

node is added. Nodes in a heterogeneous graph represent entities.

Real world entities, and thus their labels, can be grouped into a

natural hierarchy of domains, types and entities, where multiple

entities may belong to the same type and multiple types may be-

long to a single domain. We use such ontological hierarchy to help

users navigate through the options for a node label. Users can ei-

ther select a type, or entity value as the node label using drop-down

lists, where options are sorted alphabetically. A new edge can be

added in active mode by clicking on one node and dragging the

mouse to the destination node. The possible labels for the newly

added edge are ranked by their relevance to the query intent and

displayed using a drop-down list in a pop-up suggestion panel.

The assistance provided byVIIQ during query formulation mainly

consists of edge suggestions made to the user. Given a set of can-

didate edges C, we must rank these edges based on the likelihood

of them being accepted by the user, since ranking relevant edges
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Figure 6: Ranking Based on Random Correlation Paths

higher is considered important. The likelihood of a candidate edge

being accepted is conditioned on the various edges suggested and

their corresponding user responses obtained hitherto, which are

captured in query session q. Edges accepted and added to the par-

tial query graph are called positive edges. In passive mode, the

suggested edges not relevant to the user, called negative edges, are

ignored by clicking on the canvas. A query log W that captures

many such query sessions is useful in gauging the user’s query in-

tent and ranking candidate edges for a new query session q. We

simulate such a query log using Wikipedia and the data graph.

Ranking Based on Random Correlation Paths: Edges in C

must be ranked based on the correlation strength between an edge

e ∈ C and q. One way to measure this correlation strength is us-

ing the support we find for q in query log W , which are the query

sessions inW that subsume query session q. One can assume strict

correlation between all edges in q, but for a long q, this may lead to

zero support in W . The other extreme is to assume independence

between all edges in q (like in a naive Bayes classifier), but this will

likely lead to a large noisy support in W . We propose to find ran-

dom correlation paths that capture the correlation between only a

subset of edges in q, striking a balance between the aforementioned

extremes of considering correlation between edges in q.

A correlation path −→q for a given query session q, is the ordered

set of edges in q. We define supp(−→q ), the support for a correla-

tion path −→q , as the number of entries in W that are supersets of

q. A postfix of −→q , denoted postfix(−→q , ek+1), is the new path

formed by adding edge ek+1 to −→q . If −→q ={e1, e2, . . . , ek−1, ek},
then postfix(−→q , ek+1)={e1, e2, . . . , ek−1, ek, ek+1}. In order

to rank the candidate edges, we build ℜ, a set of N random cor-

relation paths as shown in Fig. 6. The query session in Fig. 6 has

edges e1-e6 and the candidate edges are e7-e9. The edges with a

yes denote positive edges, and edges with a no denote negative

edges in q. ℜ consists of the shortest correlation paths based only

on those edges in q whose supports are no more than a threshold τ .

All edges e ∈ C are ranked by the final score score(e), given by

score(e) =
1

|ℜ|
×

∑

−→p ∈ℜ

supp(postfix(−→p , e))

supp(−→p )

Experiments: Preliminary experiment results, over Freebase data

graph, suggest that ranking candidates by this approach is signifi-

cantly better than both the methods (one based on strict correlation,

and the other on naive Bayes classifier). 9 target query graphs, each

with up to 5 edges were designed. The system operated only in pas-

sive mode and the top-1 edge was suggested in each iteration. The

number of iterations required to reach the target graph starting from

a single-edge partial query graph was measured. 7 out of the 9 tar-

get query graphs were achieved within 21 suggestions (on average)

with our proposed method, while not a single relevant edge was

suggested by the other two methods for 8 of these 9 query graphs.

5. CONCLUSION AND FUTUREWORK
Querying large heterogeneous graphs with ever-changing schema

is a difficult task, since existing graph query systems and paradigms

are either difficult to use or cannot be used to formulate exact queries.

My PhD dissertation addresses the problem of improving the us-

ability of query systems for such graphs. We propose two systems:

1) GQBE, that supports a new querying paradigm that queries such

graphs by example entity tuples, without the user having to form

query graphs, and 2) VIIQ, a visual interface that helps users for-

mulate query graphs by automatically suggesting relevant edges to

add in passive mode, or by ranking labels for explicitly added query

components in active mode.

The future direction to complete my PhD dissertation is to focus

on the feedback module of the framework shown in Fig. 2. Users

can mark the relevance of the top-k answer tuples obtained from

GQBE, which can then be used to refine the MQG and obtain better

results. For VIIQ, the feedback on the relevance of answer graphs

can be used to refine the query graph and find better answers. An-

other extension is to evaluate partial query graphs and guide users

towards formulating query graphs that are likely to produce results.
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