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ABSTRACT
Massive amount of data that are geo-tagged and associated with
text information are being generated at an unprecedented scale.
These geo-textual data cover a wide range of topics. Users are inter-
ested in receiving up-to-date geo-textual objects (e.g., geo-tagged
Tweets) such that their locations meet users’ need and their texts are
interesting to users. For example, a user may want to be updated
with tweets near her home on the topic “dengue fever headache.”

In this demonstration, we present SOPS, the Spatial-Keyword
Publish/Subscribe System, that is capable of efficiently process-
ing spatial keyword continuous queries. SOPS supports two types
of queries: (1) Boolean Range Continuous (BRC) query that can
be used to subscribe the geo-textual objects satisfying a boolean
keyword expression and falling in a specified spatial region; (2)
Temporal Spatial-Keyword Top-k Continuous (TaSK) query that
continuously maintains up-to-date top-k most relevant results over
a stream of geo-textual objects. SOPS enables users to formulate
their queries and view the real-time results over a stream of geo-
textual objects by browser-based user interfaces. On the server
side, we propose solutions to efficiently processing a large number
of BRC queries (tens of millions) and TaSK queries over a stream
of geo-textual objects.

1. INTRODUCTION
Massive amount of data that are geo-tagged and associated with

text information are being generated at an unprecedented scale.
First, increasing volume of user generated content on the Web is
being associated with geo-locations. Example user generated con-
tent includes geo-tagged micro-blogs (e.g., Twitter), photos with
both tags and geo-locations in social photo sharing websites (e.g.,
Flickr), and check-in information on places in location-based social
networks (e.g., FourSquare). Second, points of interests (POIs),
such as shops and restaurant, are increasingly associated with text
descriptions (e.g., reviews) in local search services.

These data featured with both textual content and geo-spatial
content are referred to as geo-textual objects, and they can be mod-
eled as geo-textual data streams. We consider the following real-
world applications on such data streams. First, since social updates
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(e.g., Tweets) often offer the quickest first-hand reports of news
events [6], a POI service provider (e.g., Yelp) may want to annotate
each POI with its up-to-date relevant tweets in terms of both text
relevance and spatial proximity. Second, users are interested in re-
ceiving up-to-date geo-textual objects such that their locations meet
the spatial proximity requirement and their texts are interesting to
the users [3]. In these applications, the number of POIs (resp. user
queries) can be millions, and geo-textual objects may arrive in very
high volume of tens of millions a day.

The number of POIs or continuous queries issued by users can be
very large, which posts challenges for efficiently matching POIs or
continuous queries over geo-textual objects. To develop an efficient
solution to these applications, we propose a publish/subscribe sys-
tem, where POIs or users’ queries are subscriptions and geo-textual
tweets are published items. Specifically, we consider two types of
spatial-keyword publish/subscribe queries.

The first type of query is Boolean Range Continuous (BRC)
Query [1]. The BRC query consists of two components, a boolean
keyword expression and a spatial region. The answer to a BRC
query comprises such geo-textual objects that satisfy the boolean
keyword expression and fall in the specified spatial region.

Example 1: Consider a user who is interested in the real-time com-
ments about Philipp Lahm in the 2014 FIFA World Cup semi-final
between Brazil and Germany posted by the spectators on the spot
when the match is in progress. She would like to receive all the
tweets that contain relevant keywords and whose locations fall in a
specific region. The following query might be posed: “Receive all
tweets that contain Lahm, and are posted within 1km of the Estadio
Mineirao Stadium. ” 2

However, sometimes a user may receive very few matching geo-
textual objects or they may be overwhelmed by a huge volume of
matching geo-textual objects. For the same reasons that search en-
gines rank-order documents matching a query rather than employ
the boolean retrieval model (e.g., the resulting number of matching
documents of a boolean filter can far exceed the number a human
user could possibly sift through [5]), we may want to rank-order
geo-textual objects matching a query.

Example 2: Consider a user who is interested in the up-to-date
tweets about the searching progress for the Malaysia Airline plane
MH370 near the center of the planned search area. The follow-
ing query might be submitted: “continuously feed me with new
tweets whose ranking scores in terms of the distance to the query
location 44◦57′S, 90◦13′E, the text relevance with the query key-
words MH370 plane rescue, and the freshness are in the top-20. ”

2

In Example 2, three aspects are taken into account for evalu-
ating the relevance with a geo-textual object: (1) text relevance;



(2) spatial proximity; and (3) recency. We define such query as
Temporal Spatial-Keyword Top-k Continuous (TaSK) query that
continuously maintains the up-to-date top-k results over a stream
of geo-textual objects.

In order to process such queries efficiently, we build the SOPS
system that employs the Inverted File Quad-tree (IQ-tree) [1], which
is a dynamic index for managing BRC and TaSK queries. The
SOPS system targets the efficient processing of both BRC and
TaSK queries over a stream of geo-textual objects in real time.

This demonstration enables participants to view the real-time an-
notated geo-textual objects for each POI and formulate their queries
to view the real-time results over a stream of geo-textual objects us-
ing Google Maps by browser-based user interfaces. On the server
side, we organize the queries using the IQ-tree and match the geo-
textual objects utilizing this index. Queries are sent from browsers
to the server by the standard HTTP post operation.

The rest of the demonstration proposal is organized as follows.
Section 2 introduce the formal definitions of geo-textual object,
BRC query, and TaSK query. Section 3 presents the prototype of
SOPS. Finally, Section 4 illustrates the demonstration details.

2. DATA MODEL AND QUERIES
We introduce the geo-textual object and define the BRC query

and the TaSK query.

Definition 1: Geo-Textual Object. A geo-textual object is repre-
sented with a triple o = 〈ψ, ρ, tc〉, where o.ψ is a set of keywords,
o.ρ is a location point with latitude and longitude, and o.tc is the
creation time of object o. 2

In this demonstration, we consider a stream of geo-textual object
data. For example, it can be geo-tagged tweets in Twitter, geo-
tagged photos with tags in Flickr, check-ins with text descriptions
in Foursquare, geo-tagged webpages, etc.

Definition 2: Boolean Range Continuous (BRC) Query. A BRC
query is defined as a tuple q = 〈ψ, r〉, where q.ψ is a set of query
keywords connected by AND or OR semantics, and q.r represents
a spatial region. 2

A user can submit a BRC query to the system, and then she
continuously receives geo-textual objects in a timely fashion such
that the retrieved geo-textual objects satisfy the boolean keyword
expression q.ψ and are located in the query range q.r.

Definition 3: Temporal Spatial-Keyword Top-k Subscription
(TaSK) Query. A TaSK query q = 〈ψ, ρ, k, α〉, where ψ is a set
of query keywords, ρ is the query location, k is the number of re-
sults to be maintained, and α ∈ [0, 1] is a preference parameter
that balances the importance between distance proximity and text
relevance, aims to continuously feed the user with new geo-textual
objects whose temporal spatial-keyword scores are ranked in the
top-k. The temporal spatial-keyword score of a geo-textual object
o at time te is defined as follow.

Stsk(q, o, te) = Ssk(q, o)·St(o.tc, te), (1)

where Ssk(q, o) computes the spatial-keyword relevance between
query q and object o and St(o.tc, te) computes the object recency.
The spatial-keyword relevance Ssk(q, o) between q and o is com-
puted as follow.

Ssk(q, o) = α · Sp(dist(q.ρ, o.ρ)) + (1− α) · TRel(q.ψ, o.ψ), (2)

where Sp(dist(q.ρ, o.ρ)) is the spatial proximity score of the dis-
tance between query q and object o, and TRel(q.ψ, o.ψ) indicates
the text relevance between q and o. 2

Intuitively, given a stream of geo-textual objects, a TaSK query
is to continuously retrieve k objects over time such that these ob-
jects are relevant to the query keywords, their locations are close to
the query location, and they are fresh.

The spatial proximity score is calculated by the normalized Eu-
clidian distance: Sp(dist(q.ρ, o.ρ)) = 1−dist(q.ρ, o.ρ)/distmax ,
where dist(q.ρ, o.ρ) is the Euclidian distance between q and o, and
distmax can be the maximal possible distance in the spatial area.
The text relevance can be computed using any information retrieval
model. We use language models in this work.

The recency of object o is calculated by the following exponen-
tial decay function

St(o.tc, te) = D−(te−o.tc) (3)

where D is base number that determines the rate of the recency
decay. The function is monotonically decreasing with te − o.tc. It
is introduced in [4] and is applied (e.g., [6]) as the measurement of
recency for stream data.
Property: Our scoring method is general and guarantees that the
relative ranking of two different objects w.r.t. a query is consistent
as time passes, i.e., if Stsk(q, oj , t) > Stsk(q, ok, t), then ∀∆t >
0 we have Stsk(q, oj , t+ ∆t) > Stsk(q, ok, t+ ∆t).

With this property, we eliminate the need of re-ranking query
results over time. However, the ranking scores of objects in re-
sults will decrease with time, and new geo-textual objects may have
larger ranking scores and become one of results.

3. SOPS PROTOTYPE
We cover the framework and then the browser and server sides.

3.1 Framework of SOPS
SOPS adopts the browser-server model. The architecture is shown

in Figure 1. Users submit their queries through the web browser,
and the queries are then sent to the server and inserted into the
IQ-tree for continuously receiving the results over a stream of geo-
textual objects. For each new geo-textual object, the system tra-
verses the IQ-tree and finds the queries that have the object as a
result. Each result object is sent back to the user who issues the
query and is displayed on Google Maps in the users’ browser.

In our SOPS prototype, the processing schemes of the BRC
query and TaSK query are different. For the BRC query, it is in-
serted into the IQ-tree and then the geo-textual objects satisfying
the spatial and text boolean query expressions are returned as re-
sults. As for the TaSK query, its processing is more complicated,
its top-k results are firstly initialized by traversing the object index
as illustrated in Figure 1. The object index stores the geo-textual
objects not older than a specified time period. Then, the query is in-
serted into the IQ-tree. When a new object arrives, it is stored into
the object index component at first. Then, the IQ-tree is utilized to
find the TaSK queries whose top-k results include the new object,
and their top-k results are updated and sent to the users who issue
these queries.

3.2 Browser Side
The browser side provides interfaces to users for submitting queries

and viewing the returned objects. This component provides inter-
actions with the map through the Google Maps API.

When submitting a BRC query, the user specifies a location, a
radius, and a set of keywords connected by AND or OR that de-
scribes filtering requirements. Users may also input their email
addresses for receiving the query results. As for a TaSK query, the
user specifies a location, a set of keywords, the result size (“k”)
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Figure 1: SOPS Architecture

that indicates the number of geo-textual objects maintained, and a
preference parameter that balances the importance between spatial
proximity and text relevance.

Queries are sent to the server by the HTTP post operation. After
the query is indexed by the server, each new geo-textual object that
is a result is displayed using Google Maps in the browser.

3.3 Server Side

3.3.1 Overview
The web server of SOPS is built using JSP and Apache Tom-

cat. Once a query is received by the JSP server, it will be inserted
into the IQ-tree through a cost-model based algorithm. When a
new geo-textual object is received by the server, it will be inserted
into the object index and then the query processing algorithm im-
plemented in Java is invoked to find the queries that have the new
object as a result.

In our applications, the typical arrival rate of geo-textual objects
(e.g., tweets) is in the scale of millions a day, while new TaSK
queries are added at the rate of tens of thousands a day, and we
may serve millions of BRC and TaSK queries at one time. We thus
focus on a scalable solution to match and maintain the up-to-date
results for a large number of queries over a data stream of geo-
textual objects. Millions of queries can easily fit into the available
memory of modern servers. Hence, our system is developed under
this setting.

3.3.2 Indexing and Query Processing
We use a structure that combines the quad-tree and inverted file

to organize the geo-textual objects in memory, and we utilize the
IQ-tree to organize the BRC and TaSK queries in memory, and
match the queries with geo-textual objects. Note that the IQ-tree [1]
can also be disk-based. The IQ-tree is essentially a quad-tree, which
recursively divides the rectangular spatial area into four mutually-
exclusive congruent rectangles, each node of which is enriched
with reference to an inverted file for the queries that are associated
at the node.

Note that each BRC query or TaSK query, may be associated
with multiple non-overlapping Quad-cell nodes. The association of
queries and the nodes of the IQ-tree is a challenging issue, which

affects the system performance significantly. We propose tech-
niques for associating BRC and TaSK queries with the nodes of the
IQ-tree based on the cost models following our previous work [1,2].

An inverted file comprises a vocabulary of terms, and a set of
postings lists, each associated with a term. Each posting records
the information of a query that contains a particular term under a
particular Quad-cell node. We use two optimizations of inverted
file for indexing BRC query and TaSK query respectively, which
are stated as follows.

For indexing BRC queries, we apply the Ranked key method to
organize the query keywords to improve the matching processing.
Specifically, if the query keywords are connected by AND seman-
tics, we store the query into the postings list of which word is the
least frequent among all the query keywords; and the other query
keywords are stored in the posting of the query. If the query key-
words are connected by OR semantics, we index the query using
standard technique of the inverted file, i.e., the query will appear
in the postings list of each keyword in the query. Since a BRC
query q can be associated with multiple non-overlapping Quad-cell
nodes, any set of non-overlapping nodes on different levels of the
IQ-tree that intersect the query region of q could be associated with
q. So we need to find an association scheme with the minimum ex-
pected cost for each query. The cost is incurred by (1) index update:
inserting and deleting a BRC query in the IQ-tree, and (2) object
matching: traversing the inverted lists of the IQ-tree for matching
the BRC queries over incoming geo-textual objects. We utilize a
cost model based algorithm [1] that finds a set of nodes for associ-
ating each query by balancing the trade-off between the two types
of costs.

For indexing TaSK queries, our high-level idea comprises three
steps: (1) For each TaSK query q we choose a set of Quad-cell
nodes, which may be from different levels of the IQ-tree and can
cover the whole spatial area, and generate the postings of q for each
selected node; (2) Given q, for each Quad-cell node n we compute
the minimum value of text relevance such that if the relevance be-
tween q and a new object o that falls in the region of n is greater
than the minimum value, o will be used to update the current top-k
results of q; (3) We group the postings in each postings list into
blocks, each of which contains a specified number of postings. The
purpose of using the block based inverted file is to skip blocks in a
postings list such that an incoming object cannot be a result for all
the queries in the block based on the lower bound of the score of
the kth result of each query in the block.

For processing BRC queries, when a new geo-textual object o
arrives, we need to find the Quad-cell nodes of the IQ-tree whose
regions cover the location of o. Then for each of such nodes, for
each keyword w in o, we retrieve its postings list. Each posting in
the postings list corresponds to a BRC query q, and we check if the
spatial region of query q covers o and the keyword expression of
q is matched by o. As for processing TaSK queries, when a new
geo-textual object o arrives we traverse the block based inverted
file under the Quad-cell nodes of the IQ-tree whose regions cover
o. Specifically, at each level of Quad-cell node containing o we
traverse its postings lists of all the words contained in object o si-
multaneously based on the Document-at-a-Time (DAAT) technique
with forward skipping [5].

The details of the indexing structure and algorithms for process-
ing BRC and TaSK queries can be found elsewhere [1, 2].

4. DEMONSTRATION AND DETAILS
In this demonstration, participants will be able to experience how

the system can be used for issuing continuous queries to retrieve
geo-textual objects over the data stream. The browser interfaces



Figure 2: Browser Interface for BRC Query Figure 3: Browser Interface for TaSK Query

of SOPS developed for answering BRC query and TaSK query are
shown in Figures 2 and 3, respectively. Users may choose the query
type in the navigation bar.

Submitting a BRC query: Users specify the query location by
clicking a location on Google Maps (the latitude and longitude of
the location is obtained using the Google Maps API). Users then
need to specify the radius of the query region using the slider bar.
The colored circles in Figure 2 indicate the regions of BRC queries
issued through the browser. To specify the query keywords, users
can input the keywords in the “Query Keywords” text box and con-
nect them by either AND or OR (“Space” will be regarded as AND
semantics by default). If users hope to receive email notifications
when each qualified geo-textual object arrives, they may indicate
their email addresses in the “Email” text box. When a BRC query
is submitted, the browser will display the location and text of qual-
ified geo-textual objects in a real-time manner.

Submitting a TaSK query: For submitting a TaSK query, users
specify the query location and the query keywords. They also need
to specify the number of results to be maintained for this query
in the “K” text box. To specify the preference parameter, users
can drag the corresponding slider bar that balances the weight be-
tween text relevance and spatial proximity. If the slider is dragged
to “text”, the ranking function just consider the score of text rele-
vance, and the score of spatial proximity between the query and the
geo-textual object will not be considered any more. If the slider is
dragged to “spatial”, only the score of spatial proximity will be con-
sidered in the ranking function while processing this TaSK query.
The up-to-date top-k results for each query are maintained.

Datasets and Demonstrations: We use four real-world data sets
for the demonstration. The first dataset is the businesses and re-
views of Yelp1 in Singapore, which contains 11,240 businesses and
20,764 reviews. Each business, which can be considered as a Point
of Interest (POI), contains the business name, categories, and the
location on Google Map. Each review has a location, text descrip-
tion and the timestamp of creation. The second dataset contains
about 179,000 POIs with locations, names, categories, and descrip-
tions in Europe downloaded from PocketGPSWorld2. The third
dataset contains about 120,000 POIs in Foursquare3 with locations,
names, and categories in the U.S.A. The fourth dataset contains

1http://www.yelp.com
2http://www.PocketGPSWorld.com
3http://foursquare.com

10,000,000 geo-tagged tweets crawled from Twitter4 with both lo-
cation and text. Reviews on Yelp and geo-tagged tweets on Twitter
are regarded as geo-textual data streams.

We demonstrate two scenarios. First, participants can submit
their own BRC and TaSK queries through the browser to contin-
uously receive qualified reviews or tweets. Second, we annotate
each POI with relevant geo-tagged tweets in real time. This is at-
tained by regarding each POI as a BRC query or a TaSK query.
Participants may zoom in on the map and select the POI they are
interested in to see the annotated tweets.

To demonstrate that SOPS offers scalability and is capable of
good performance for handling a large number of queries over a
high volume of geo-textual data stream, we initialize the IQ-tree
with 10,000,000 randomly generated queries (including both BRC
queries and TaSK queries) and then we vary both the average ar-
rival rate of tweets and the number of queries. Based on our evalua-
tion result, SOPS is able to efficiently process 20 million subscribe
queries over a stream of more than 50 million geo-textual objects
per day.
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