Graph Data Management Systems
for New Application Domains:
Social Networks & the Web of Data

Philippe Cudré-Mauroux Sameh Elnikety

University of Fribourg Microsoft Research
Switzerland USA

Welcome to Graphs

The Internet

Friendship Network Internet Map
[Moody’01] [lumeta.com]

Protein Interactions Food Web

[genomebiology.com] [foodwebs.org]

Graphs: Small and Large

* Small graphs
— Manage a collection of small graphs
— Bioinformatics and cheminformatics
— Well studied
* Large graphs
— One large graph, aka “network”
— Social network, and knowledge representation
— Less studied

Classes of Large Graphs

* Random graphs
— Node degree is constrained
— Less common

e Scale-free graphs
— Distribution of node degree follows power law
— Most large graphs are scale-free
— Small world phenomena & hubs

— Harder to partition

Classes of Large Graphs

Random Network Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages
i — Typical node -
@ ' b o
E = k-3
S ‘s ?5 @
o o ow
2 o o o0
E E 28
= = B
=z — =

=

Number of Links Number of Links Number of Links (log scale)
5

Organic Growth -> Scale Free

BIRTH OF A SCALE-FREE NETWORK

ASCALE-FREE NETWORK grows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node
(green) prefers to attach to an existing node [red) that already has many other connections. These two basic mechanisms—growth
and preferential attachment.-will eventually lead to the system's being dominated by hubs, nodes having an enormous number of links,

r
'j' Rl .. 7 . 'S
«__ &1 N, ¢ g » »
L S e ® ¢ o« -0 o « -0 %
g)’f\ A < rf N]\ AT] ‘\ ' by
[g — [3 ® e . @ L e @ ® ®

Examples of Organic Growth

NETWORK

Cellular metabolism

Hollywood

intermnet

Protein regulatory
network

Research collaborations

Sexual relationships

NODES

Molecules involved in
burning food for energy

Actors

Routers

Proteins that help to
regulate a cell's activities
Scientists

People

LINKS

Participation in the same
biochemical reaction

Appearance in the same movie

Optical and other
physical connections

Interactions among
proteins

Co-authorship of papers

Sexual contact

Generating a Large Graph

 Random graph
— Fix the number of nodes (no growth)
— Each edge connects two random nodes

e Scale-free graph
— Copy model

* Add new node
— Take percentage of links from another node

— Kronecker graphs

Kronecker Graph Example

e Epinions (N=76K, E=510K)

* Fitting time = 2 hours

* Real and Kronecker graphs are close

Path lengths

Degree distribution

107 — Epinions —e—

g« Kronecker —ili— 1

10 0 1 .A.ALL1 - x~.1,1.2 A 11111 3 11 /Hul 4

10 10 10 10 10
node degree

-
-

o <
@« k=]

reachable pairs
o

Epinions —@— -

| | Kronepker T
3 4 5 6

number of hops

-

Let’s Go Hyper!

* Hyper-edge
— A traditional edge is binary

— A hyper edge relates n nodes
e Order can be important
* Child-of edge versus father, mother, child hyper-edge

* Hyper-node
— A traditional node represents one entity

— Hyper node represents a set of nodes
* Person node versus family hyper-node

Roadmap

Intro to Graphs

Social Networks
— Data Model

— Queries

— Processing

Web of Data

— Data Model
— Queries
— Processing

Systems
Current Research Directions

Social Networks

e Scale
— LinkedIn

e 70 million users

— Facebook
* 500 million users
* 65 billion photos

* Queries
— Alice’s friends
— Photos with friends
* Rich graph
— Types, attributes

Social Networks: Data Model

* Node
— ID, type, attributes = @™

* Edge

— Connects two nodes

oooooo

— Direction, type, attributes

ooooo
App Manages ooooooooooooo
Manages
e -
Managed-by

13

Managing Graph Data

 Here we focus on online access

— Rather than offline access
* Network analytics and graph mining

* Queries
— Read
* Updates
— Data update: change node payload

— Structural update: modify nodes and edges

Updates: API

add-node(node-id, payload)
remove-node(node-id)
update-node(node-id, payload)

add-edge(s-node-id, d-node-id)
remove-edge(s-node-id, d-node-id)

Graph Query Languages

* Several languages
* Trade-off

— Expressiveness
— Execution

* Regular language reachability

— Used in Horton

RL - sal

Regular Language

 Query is a regular expression
— Sequence of node and edge predicates

* Example

— Find Alice’s photos
— Photo, tags, Alice
— Query =
* Node: type=photo,
* Edge: type=tags,
* Node: type=person, name = Alice
— Result: matching paths

Query Language Operators

* Projection

— Alice’s photos

— SELECT photo FROM photo, tags, Alice
* OR

— (Photo | video), tags, Alice
* Kleene star

— Alice’s org chart
— Alice, (manages, person)*

18

Example: CodeBook - Graph

Contains

Contains

Contains

| Person
% Pam the Program Manager

Folder
$
Contains
) SourceCode
Class Art

A\

SourceCode
Namespace Foo

| N
@ Work Item)
W Bug #673
. 4 \ g

Mentions

LexicallyEnclosed gyperclass LexicallyEnclosed

v ¥
g' SourceCode
Method Canvas

'; SourceCode
LexicallyEnclosed Mentions

Mentions

Lexically
Enclosed

Class Drawing

Closed

Mentions

Person 7} SourceCode . | . SourceCode SourceCode
g Tessa the Tester J Test Resuk E’\»;Identiﬁer Square | Mentions = @ X |dentifier Canvas

‘ Method Square

19

Example: CodeBook - Queries

. Person, FileOwner>, File, FileOwner<, Person

. Person, DiscussionOwner>, Discussion, DiscussionOwner<, Person

. Person, WorkltemOwner>, Workltem, WorkltemOwner< , Person

. Person, Manages<, Person, Manages>, Person

. Person, WorkltemOwner>, Workltem, Mentions>, File, FileOwner<, Person

. Person, FileOwner>, File, Mentions>, Workltem, Mentions>, File, FileOwner<, Person

no are my colleagues?
ho is calling my code?
no introduced a bug in my code?

===

Example Execution Engine

* Executing RL query
1. Build a FSM
2. Optimize FSM
3. Execute FSM using distributed graph traversal

Centralized Query Execution

Alice Tags Photo

Alice, Tags, Photo ‘ Q e e e
Traversal similar to Breadth .
First

Answer Paths: ‘
Alice, Tags, Photol _

Alice, Tags, Photo8
Photo4
Photo5 Photo6

Distributed Query Execution

Alice, Tags, Photo, Tags, Hillary

Partition 1 /

23

Distributed Query Execution
v v v VY

Alice, Tags, Photo, Tags, Hillary
Partition 1 Partition 2

Partition 2

24

Sub-graph Matching

— From: path

— Sequence of predicates

— To: sub-graph
— Graph pattern

— Sub-graph isomorphism

\\ /
%

A § \

Q %
2. R

7 N

T
('Iﬁl}-——Uve&n1

<
2
q9

Friend

o
g
s

8
Bob

Bob

25

Mappings Are Not Rigid

 Example

— Edge are entities
* Types, attributes, ids

— Supporting edge entities
— Supporting hyper-nodes and hyper-edges

Roadmap

Intro to Graphs

Social Networks
— Data Model

— Queries

— Processing

Web of Data [WoD]

— Data Model
— Queries
— Processing

Systems
Current Research Directions

Example: Linked open Data[LoD]

\ '/A-;; /.A——A\ /.——-»\
S Ancrews [noL \
/ Aumo { Resource ([_
(NySD.\t(‘\ [scronbier \tss / @ (om /
| (0BTune) | | P, / o\ ': ®
' | Resource
. C a e \ Resdng | e Lsts P N \/'\
- - — b4
77 N\ [mopra 7 waus c\ | Y"w Own \ ,/ N \
‘ o8 || tune I‘ \l‘:u Library ' LIBRIS { LCSH
Tropes (zRgist) /N\m
B [chaster
o\ . \ Read .:.9 - \ ¢
— | -x.m /3o 7\ Ln s | / .
o) (,,:\ mm / Gem.
\ Fankubz \ I (Taks)

)u"‘tr\&) L\\/ \ L

(repuls v‘“‘ / Cast.tm - N Poké-
(- / Last.tm q
e) 2 o\ avses \‘~ wastem | | N C’VW Unked)
[rese [/ ere T v, -
/ { data gov (Produc- (DBTune) l| (rofize) P \ LCCN
. el - I\‘Z‘/Z (classical
— ~Ax S (08
+ TU es o =SSN NN
—_ (fe 7~ N\ [eec 4R
Va \ — \ AXTing) \ 7
[Energy \ / N\ «....n\ | OpenEl A)

@)(z) TE
. — \—‘t//\-/"’_"
* Queries (e =)
[legistation
- fretr -«\ Unked Data ASAN
N"‘ (esta.gov | for Intervals - \

ﬁ,/‘ | cr:(:::m -

me 7 :)

[] h -
London ‘\j—
Domains &) e
. . 7 /
Publications rormma) ,a,.wb
— Cross-domain \/ \Us'sec | TS

Sﬂv‘anl
XBRL

[rofabout (EUNIS

— Life sciences @
— User-generated ORI YA
" - - GeoD:
Government — vedia ~\j \J
lU ondud\
Y - Pp— -
uuuqfdpﬂ C

http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Linked Open Data Principles

* Four basic principles [Berners-Lee06]
— Use URIs to identify things.
— Use HTTP URIs to dereference URIs
— Provide structured data about URI in RDF
— Include links to related URIs

LoD Application Example

. wsDATA.UO*’ ozone level visualization

EMPOWERING PEOPLE

Winnipeg M
Vancouver e) Gulf of St -
¢ \ Lawrence
N o —

“Seattle Spokane et O . 7/\

o)

Québec /1

Nashi Montana Dakota . Yo7 o New:
Washington O Minnesota — © [@runswick = &, e
E Y Minneapol \7\ U"g“‘a o / 1 No rz_;—'Edward

M eapoll d Vé
South " W<consin \ /Mom'efl o Ma%"\ Scotia Island
Oregon o Dakota Q\'\ (bo 0 O~
aho ; A o) \ NI
omin ity eeQ I Buffal Vo -
.. : O .0 QO
balé‘%ske Nebraska o{.‘-ma'\a‘) = New Hampshire
O y ver unco‘no Kansas i N AQ Massachusetts
Nevada City : S~ Rhode Island
Sacramento O Ut rado o St
ic San - Kans: Missour Connecticut
Franciscol Wichita © A
3 N n
New Jersey
O OklahonQr g S i Delaware
é C DR Maryland
Mi ippI District of

X Mexico Dallas
[*]

Jugdrez
chn—Q

Columbia

Tavae aa

e 2 data sets
— clean air status [data.gov]
— Castnet site information [epa.gov]

* 2SPARQL queries 0

Web of Data: Data Model (1)

e Structured data
— Resource Description Framework (RDF) [Manola04]

* Triples!

1:subject, 2:predicate, 3:0bject

ex.: philippe, made, idmesh_paper:

1: http://data.semanticweb.org/person/philippe-cudre-mauroux

2: http://xmIns.com/foaf/0.1/made

3: http://data.semanticweb.org/conference/www/2009/paper/60

31

Web of Data: Data Model (2)

* Naturally forms (distributed) graphs

* Nodes

— URIs [subjects]

— URIs / literals [objects]
* Edges

— URIs [predicates]

— D|reCted ‘ made I[dmesh
Philippe
paper

Web of Data: Data Model (3)

db:Massachusetts

L ¥ \dbo:governm
Exa m p I e dbo:“‘"*yr/. \ db:Deval_Patrick

db:Bos‘ton dbo:instate dbo:nickname .
_—/
/ dbo:population

dbo:nickname

l dbo:population
Beantown 2,320,400 .db :Barack_Obama

- dbo:livesIn
xsd:integer
642,109 FolbwsOnTwn‘Hev
xsd:integer

Fo\\owsOnTwnﬁev

dbo: fnend

The Bay State

<http://www.w3.0rg/2010/Talkes/1107-rdf-sandro/slides>
‘ <http.l/www w3.org/

S People/Sandro/data
d°"°‘“°’ #Sandro_Hawke>

db:Boston dbo:nickname "Beantown".
db:Boston dbo:population "642109"""xsd:integer.
db:Boston dbo:inState db:Massachusetts.
db:Massachusetts dbo:capital db:Boston.
db:Massachusetts dbo:nickname "The Bay State".

e o T

Graphs © Sandro Hawke

33

RDF Schemas (RDFS) [Brickley04]

Classes, inheritance
— Class, Property, SubClass, SubProperty

Constraints on structure
— Constraints on subjects (Domain)

— Constraints on objects (Range)
Collections

— List, Bag

Reification

Schemas can be reused, mixed

RDFS Example

Political Unif
su\oClassOwc
subclassof ~—
. state
City type
'\ Massaohuseﬂs ’rqpe ks
type fqpe Capﬁa\
805\ nS*a’(e Nnckname
/ Population O
| Population
nickame The Bay State / v
l Population
range
Beantown 2,320,400 J
xsd:integer
® ssdinteger
642,109

xsd:integer

Ontologies (OWL) [W3COWLO09]

— Very expressive schemas (ontologies)
— Based on Description Logics

e Exists in different flavors

— Example: OWL 2 EL axioms:

class inclusion (SubClassOf)

class equivalence (EquivalentClasses)

class disjointness (DisjointClasses)

object property inclusion (SubObjectPropertyOf) with or without property chains, and data property inclusion (SubDataPropertyOf)
property equivalence (EquivalentObjectProperties and EquivalentDataProperties),

transitive object properties (TransitiveObjectProperty)

reflexive object properties (ReflexiveObjectProperty)

domain restrictions (ObjectPropertyDomain and DataPropertyDomain)

range restrictions (ObjectPropertyRange and DataPropertyRange)

assertions (Samelndividual, Differentindividuals, ClassAssertion, ObjectPropertyAssertion, DataPropertyAssertion,
NegativeObjectPropertyAssertion, andNegativeDataPropertyAssertion)

functional data properties (FunctionalDataProperty)
keys (HasKey)

— Inference! ex.: TransitiveObjectProperty(hasAncestor)
hasAncestor(x, y) A hasAncestor(y, z) — hasAncestor(x, z)

RDF Storage (1)

 XML/JSON Serialization

—Exchange format
* Not meant for humans (ugly)
 Not meant for DBMSs (verbose)

—Example:

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:db="http://dbpedia.orqg/resource/">

<rdf:Description rdf:about="http://dbpedia.org/resource/Massachusetts">

<db:Governor>

<rdf:Description rdf:about="http://dbpedia.org/resource/Deval Patrick" />
</db:Governor>
<db:Nickname>Bay State</db:Nickname>

<db:Capital>

<rdf:Description rdf:about="http://dbpedia.org/resource/Boston">
<db:Nickname>Beantown</db:Nickname>

</rdf:Description>
</db:Capital>
</rdf:Description>
</rdf :RDF>

37

RDF Storage (2)

* RDFa

—Embedding RDF information in HTML pages
—Supported by Google, Yahoo, etc
—Example:

<body>
<div about="http://dbpedia.org/resource/Massachusetts">The Massachusetts governor is

Deval Patrick
,

the nickname is "Bay State",
and the capital

has the nickname "Beantown".

</div>
</body>

RDF Storage (3)

e Various internal formats for DBMSs
— Giant triple table (triple stores)

* |subject|predicate|object]|

— Property tables
* |subject|propertyl|property2|property3|...|

— Sub-graphs

WoD: Workloads

e Bulk inserts

 Read-mostly
— Node/triple look-ups
— Distributed entity retrieval queries
— Sub-graph queries
— Path queries
— Inference queries
 Mostly using SPARQL query language
[Prud'hommeaux08]

— Alternatives exist, e.g., “Thread: A Path-Based Query
Language” [McDonald11]

SPARQL (1/2)

* Declarative query language for SW data

* SPJ combinations of triple patterns

— E.g., “Retrieve all students who live in Seattle and
take a graduate course”

— Select ?s Where {
?sis_a Student
?s lives_in Seattle
?s takes ?c
?cis_a GraduateCourse }

SPARQL Query Execution

e Typically start from bound variables and
performs self-joins on giant triple table

— Select ?s Where {
?s is_a Student
?s lives_in Seattle
?s takes ?c
?cis_a GraduateCourse }

— I Gp=”is_a” A o=“Student”

X Tt c5p=”|ives_in” A o="Seattle”

X It (Gp=”takes” o[X]s Gp=”is_a” A o=”GraduateCourse”)

SPARQL (2/2)

* Beyond conjunctions of triple patterns
— Named graphs
— Disjunctions
« UNION
* OPTIONAL (semi-structured data model)
— Predicate filters
* FILTER (?price < 30)
— Duplicate handling (bag semantics)
* DISTINCT, REDUCED
— Wildcards

— Negation as failure
WHERE { ?x foaf:givenName ?name.
OPTIONAL { ?x dc:date ?date }.
FILTER (!bound(?date)) }

SPARQL 1.1 [Harris11]

e Candidate recommendation

e Adds a whole new set of beasts
— Aggregates
— Subqueries

— Filters
 EXISTS, NOT EXISTS

— Property paths (? +* 7 / |)

— Inference queries
* Entailment regimes[Glimm11]

Sub-graph Queries (1)

* Molecule queries
— Star-shape sub-queries
— Combining properties of a given entity

— E.g., “Retrieve the first name, last name and full
address of all students”

12512

student ID

Main st street

zip _address first name

02144 </ < Student23 > “Bob”
City \
take last name “Doe”
Brookline M

Sub-graph Queries (2)

* Scope queries

— Retrieve all triples within a certain scope from a
given root node (typically for visualization
purposes)

— E.g., scope 1 from “Student23”

student ID 12512
Main st street

zip _address first name

02144 / < Student23 > “Bob”
City \
taV last name “Doe”

Brookline

Course?21

Path Queries (1)

* Property path queries
— Queries on series of predicates

e E.g., “find all professors who supervise
students following courses”

Professor

student ID

supervises

Student23

first name

12512

takes
Course?1

last name

IIBOb”

IlDoe”

Path Queries (2)

e Various sub-flavors

— Frequent path queries
* For optimization or visualization purposes
* E.g., “Find the most frequent paths of length 2”

— Regular expressions for properties (SPARQL 1.1)
cP+FA/

* E.g., “find reachable friends through 2 different paths”

— SELECT * WHERE {
:John (foaf:friendOf|urn:friend)+ ?friend. }

Inference Queries

* Additional data can be inferred using various sets
of logical rules

e Specify which ones to use by entailment regimes
[Glimm11]

— RDF Schema has 14 entailment rules

e E.g., (p,rdfs:domain,x) && (u, p, y)
=> (u rdf:type x)

— OWL 2 RL has 70+ entailment rules.

* E.g., (p,rdf:type,owl:FunctionalProperty) && (x, p, y1) &&
(%,p,y2)
=> (y1, owl:sameAs, y2)

RDF/OWL Benchmarks

e Large choice of benchmarks, e.g., focusing on
— Large knowledge bases (LUBM) [GuoO5]
— Library search and visualization (Barton) [AbadiO7]
— Linked Open Data (BSBM) [Bizer11]
— RDF Analytics (BowlognaBench) [Demartinill]

Roadmap

Intro to Graphs

Social Networks

— Data Model

— Queries

— Processing

Web of Data [WoD]

— Data Model
— Queries
— Processing

Systems
Current Research Directions

WoD Systems

* Many interesting approaches/systems
* Only very small sample here

RDF-3X [NeumannO08]

Max Planck Institut fur Informatik
— Thomas Neumann & Gerhard Weikum

Open-Source
Triple-table storage

No turning knobs
— Workload-independent physical design

Reduced instruction set

— Merge-joins over sorted lists

RDF-3X: Storage and Indexing

* Dictionary encoding of all literals

* Exhaustive-indexing approach

— Clustered B+-trees on all six SPO permutations
(see also Hexastore [Weiss08])

— Also on six binary and three unary projections

* Indexing count aggregates

— Support for versioning by two additional fields for
each triple

* Created and deleted timestamps

RDF-3X: Compression

* Triples stored at the leaves of the tree
* Valuel, Value2, Value3

— Neighboring triples are often very similar
* Valuel and Value2 the same

e Leaf pages use byte-wise compression
— Store deltas for each value

Gap | Payload | | Delta Delta Delta
1 Bit | 7 Bits 0-4 Bvtes 0-4 Bytes 0-4 Bytes
Header value; values values

Figure 3.1: Structure of a compressed triple

* Triple often encoded in a single byte

RDF-3X: Query Optimization

* Triple pattern
— Single range scan

 Multiple triple patterns
— Order-preserving merge-joins
— Join ordering

e Dynamic programming; tradeoff between
— Use literals in triple patterns as index prefix
— Produce interesting orders for subsequent merge-joins

* Plan pruning based on estimated execution costs

* Costs based on selectivity estimates
— Histograms
— Join-path cardinalities

Oracle Semantic Web Technologies

* Part of Oracle Database 11g

— http://www.oracle.com/technetwork/database/
options/semantic-tech/index.html

RDF data stored in two main tables
— Nodes, edges
* Optional B-tree indexing
— add_sem_index(column_list)
* Mixing SQL and SPARQL
— SEM_MATCH
e Efficient inference

o mue i o

Oracle: Triple Storage

RDF_VALUES$ table

vhame_prefix vhame_suffix Value_id literal_type | language_type long_value
http://xyz.com/ John 100
http://xyz.com/ Mary 200
http://xyz.com/ managerOf 300

RDF_LINKS$ Table
Unique key

start_node_id | p_value_id | canon_end_node_id model_id g_id o
Q)

100 300 200 1 400 2 4

- =

o

=

start_node_id | p_value_id | canon_end_node_id model_id g_id o
Q

==

ANY e=b

ORACLE

58

Oracle: Inference

Inference done using forward chaining
— Triples inferred and stored ahead of query time

Various profiles supported
— RDFS, OWL 2 RL, SKOS, subset of OWL 2 EL

Large scale owl:sameAs handling
— Compact materialization of owl:sameAs closure

User-defined SWRL-like rules
Incremental, parallel reasoning

OWLIM [Bishop11]

 Commercial, native RDF/OWL DBMS
— Comes in different flavors

* Main-memory

* Disk-based
— Persistency through N-triple files

— Scalable forward-chaining inference
— Several interesting search/ranking features

OWLIM: Searching & Ranking

Full-text search support
— Arbitrary string operations in SPARQL

RDF ranking

— Relevance of entities based on their
interconnectedness

RDF “priming”

— Contextualized query processing based on starting
nodes

Publish/subscribe mechanisms

dipLODocus[RDF] [Wylot11]

* Blazing-fast, hybrid storage system for RDF
— Aggressive compression (lexicographical tree)
— Pre-computed joins (declarative molecule storage)

— Efficient support for aggregate/analytic operations
on literals

B |Queries Q Template
o & Inserts C uery Manager
x | Processor 2
(2] Ry
5} Results L Cluster £
= le el S
Optimizer Manager Z
GetLists/ 3
GetClusters Update Cluster s
y Clusters
URI - 7
_I——> (%(/ £ @) Buffered
key RN G // v operations
o M M M M 11
dipLODoOCUS g, L1
D Template Lists
—i

Graph Systems

* Relational: SQL
* Triple store: SPARQL
* Custom graph server: API

Graph Servers

Neo4|
InfiniteGraph
Google Pregel

Microsoft Horton & Trinity
DEX

.. ...
eneotechnology

The Neo4j model: Property Graph

Core abstractions:

name = “Emil”
age = 29

* NOdeS sex = “yes”
e Relationships between nodes
e Properties on both

type = KNOWS
time = 4 years

type = car
vendor = “SAAB”

model = “95 Aero”

65

‘@
.o neotechnology

n relationships

Building a node space (core API)

GraphDatabaseService graphDb =

Node mrAnderson = graphDb.createNode() ;
mrAnderson. setProperty("name'", "Thomas Anderson');
mrAnderson.setProperty("age", 29);

Node morpheus = graphDb.createNode() ;

morpheus.setProperty('"name", "Morpheus'") ;
morpheus.setProperty("rank'", "Captain'");
morpheus. setProperty("occupation", "Total bad ass");

mrAnderson.createRelationshipTo(morpheus, RelTypes.EKNOWS) ;

5 ...
eligatechnolagy

Building a node space

Transaction tx = graphdb.beginTx() ;

tx.commit () ;

‘@
.o neotechnology

n relationships

Code (2): Traversing a node space

Traverser friendsTraverser = mrAnderson. traverse (
Traverser.Order.BREADTH FIRST,
StopEvaluator.END OF GRAPH,
ReturnableEvaluator.ALL BUT START NODE
RelTypes.KNOWS,

Dlrectlon.uuTg@WNG) ;

System.out.println("Mr Anderson's friends:");

for (Node friend : friendsTraverser)

{

System.out.printf("At depth %d => %s%n"

4
friendsTraverser.currentPosition () .getDepth(),

friend.getProperty('"name"));

Infinite Graph

Vertex alice = myGraph.addVertex(new Person(“Alice”));
Vertex bob = myGraph.addVertex(new Person(“Bob”));

Vertex carlos = myGraph.addVertex(new Person(“Carlos”));
Vertex charlie = myGraph.addVertex(new Person(“Charlie”));

alice.addEdge(new Meeting(“Denver”, “5-27-10"), bob);
bob.addEdge(new Call(timestamp), carlos);
carlos.addEdge(new Payment(100000.00), charlie);
bob.addEdge(new Call(timestamp), charlie);

Calls

Graph

Infinite Graph Architecture

InfiniteGraph

Active Research Topics

Transactions
Partitioning
Indexing

Parallel execution

Partitioning A Large Graph

* Motivation

— Graph too big for one machine
* Solutions

— Hash partition

— METIS

— Local approaches
— Hierarchical approaches

Conductance

* Graph G(V,E), search for subset S of V
V=S union V\S
* Find S with small conductance

volume : vol(S) = sum of the degrees of vertices in S.
cutsize : e(S,V \ S) = number of edges between S and V' \ S.
S.V\S)

vol(S) V \ S

sparsity : ¢(5) = el

73

Evolving set partitioning algorithm

 Randomized algorithm
* Approximation guarantee
* Local partitioning i

74

Hierarchical Partitioning

* Hierarchical communities

 Modularity metric

— Each node joins the neighbor that maximizes
modularity

Hierarchical Partitioning

Transactions

* Motivation
— Correctness
* Simplifies applications
* Workload characteristics
— Dominated by reads
— Small updates

Centralized Transactions

* Solutions
— Locking schemes
— Optimistic concurrency control

* Multi-versioning: snapshot isolation
e Distributed transactions

Distributed Transactions

* Motivation
— Graph too large for one machine
— Graph is partitioned
— Replication becomes requirement
e Availability
 Scalability

WoD: Current Research Directions

Read-Write Linked Data

arge-Scale Inference/Query Processing
Publication of Linked Data

Entity Matching

(1) Read-Write Linked Data

How to handle updates / transactions?

Protocols
— HTTP PUT to overwrite file [Berners-Leel0]
— SPARQL update [Gearonl11]

Updates & transaction at the back-end

— See for instance x-RDF-3x

Also interesting problems relating to lineage
— Dublin Core, W3C Provenance Group, OPM...

(2) Large-Scale Inference/Query Processing

* Large-scale inference
— Old topic, hard
— Inference onlarge A-Boxes (instances)

— Distributed inference on heterogeneous,
conflicting data sets

* Distributed query processing
— Partitioning/caching triples
— Optimizing queries across N SPARQL end-points

(3) Publication of Linked Data

* From websites/text
— Entity extraction, NLP

* From relational databases
— Rel2rdf

* Knowledge elicitation

— Crowdsourcing

Entity Matching

* The great thing about unique identifiers is
that there are so many to choose from

— ID jungle!
— Hundreds of identifier for one referent
= Matching URIs at LoD scale

WoD: To Go Further

1-day tutorial on the Semantic Web and WoD
— http://people.csail.mit.edu/pcm/SemWebTutorial.html

International Semantic Web Conf. 2011
— http://iswc2011.semanticweb.org/

List of large triple stores
— http://www.w3.org/wiki/LargeTripleStores

Some benchmarks & results for triple stores
— http://www.w3.org/wiki/RdfStoreBenchmarking

85

References (1)

[Manola04] Frank Manola and Eric Miller (Eds): RDF Primer. W3C Recommendation (2004). http://www.w3.org/TR/rdf-primer/

[BrickleyO4] Dan Brickley and R.V. Guha (Eds.): RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation
(2004). http://www.w3.org/TR/rdf-schema/

[W3COWL09] W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview. W3C Recommendation (2009).
http://www.w3.0org/TR/owl2-overview/

[Berners-Lee06] Tim Berners-Lee: Design Issues: Linked Data. http://www.w3.org/Designlssues/LinkedData

[McDonal11] Glenn McDonald: Thread: A Path-Based Query Language for Graph Databases. SemTech 2011. http://
semtech2011.semanticweb.com/uploads/handouts/SemTech2011_Thread_4144 3497.pdf

[Prud'hommeaux08] Eric Prud'hommeaux and Andy Seaborne: SPARQL Query Language for RDF. W3C Recommendation (2008).
http://www.w3.org/TR/rdf-sparql-query/

[Glim11] Birte Glimm and Chimezie Ogbuiji (Eds): SPARQL 1.1 Entailment Regimes. W3C Working Draft (2011). http://
www.w3.org/TR/sparqll1-entailment/

[Harris11] Steve Harris and Andy Seaborne: SPARQL 1.1 Query Language. W3C Working Draft (2011). http://www.w3.0org/TR/
sparqll1-query/

[Berners-Leel10] Tim Berners-Lee: Design Issues: Read-Write Linked Data. http://www.w3.org/Designlssues/
ReadWriteLinkedData.html

References (2)

[Ogbujill] Chimezie Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol. W3C Working Draft (2011). http://www.w3.org/TR/sparql11-
http-rdf-update/

[Gearon11] Paul Gearon, Alexandre Passant, and Axel Polleres: SPARQL 1.1 Update. W3C Working Draft (2011). http://
www.w3.org/TR/2011/WD-sparqgl11-update-20110512/

[AbadiO7] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach: Using The Barton Libraries Dataset As An RDF
benchmark. MIT-CSAIL-TR-2007-036 (2007).

[Guo05] Yuanbo Guo, Zhengxiang Pan and Jeff Heflin. LUBM: A Benchmark for OWL Knowledge Base Systems. Journal of Web
Semantics 3(2), 2005.

[Bizer11] Chris Bizer et al.: The Berlin SPARQL Benchmark (BSBM). http://www4.wiwiss.fu-berlin.de/bizer/
BerlinSPARQLBenchmark/

[Demartinill] Gianluca Demartini, lliya Enchev, Joél Gapany, and Philippe Cudré-Mauroux: BowlognaBench—Benchmarking RDF
Analytics. SIMPDA 2011.

[Neumann08] Thomas Neumann and Gerhard Weikum: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 2008.

[Weiss08] Cathrin Weiss and Panagiotis Karras and Abraham Bernstein:
Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1), 2008.

[Bishop11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, lvan Peikov, Zdravko Tashev, and Ruslan Velkov: OWLIM: A family
of scalable semantic repositories. Semantic Web Journal 2(1), 2011.

[Wylot11] Marcin Wylot, Jige Pont, Mariusz Wisniewski, and Philippe Cudre-Mauroux: dipLODocus[RDF]--Short and Long-Tail RDF
Analytics for Massive Webs of Data. ISWC 2011.

Acknowledgements

Q v \imm

Alan Geller Jim Larus Sergey Bykov

 Orleans
team (MSR):

= A

-
—_

CJ Williams Jorgen Thelin Suyash Sinha

i

Gabriel Kliot

e Academic collaborators:

— Jiaging Du (EPFL), Mohamed Fathallah (MSR), Sherif Sakr (NICTA),
Mohamed Sarwat (UMN), Willy Zwaenepoel (EPFL)

 The whole eXascale Infolab team @ U. Fribourg
— http://diuf.unifr.ch/xi/

Ravi Pandya Yuxiong He

88

Conclusions

* New application domains require new systems
— New platforms for Social networks & the WoD

* |In the future we expect increasing convergence
between social networks and the Web of data

— Data Models: SNs models are richer and more diverse
e But as we pointed out they can be mapped onto RDF

— Queries: Nothing standard for SNs, SPARQL++ (i.e.,
with reachability) might well take over

— Graph Systems are already transactional for SNs
e Systems are increasingly focusing on transactions for WoD

