
Graph	
 Data	
 Management	
 Systems	

for	
 New	
 Applica9on	
 Domains:	

Social	
 Networks	
 &	
 the	
 Web	
 of	
 Data	

Tutorial	
 at	
 VLDB	
 2011	

Philippe	
 Cudré-­‐Mauroux	
 Sameh	
 Elnikety	

University	
 of	
 Fribourg	

Switzerland	

MicrosoF	
 Research	

USA	

Protein	
 Interac9ons	
 	
 	
 Food	
 Web	

[genomebiology.com]	
 	
 	
 [foodwebs.org]	

Friendship	
 Network	
 	
 	
 Internet	
 Map	

[Moody’01]	
 	
 	
 [lumeta.com]	

Welcome	
 to	
 Graphs	

2	

Graphs:	
 Small	
 and	
 Large	

•  Small	
 graphs	

– Manage	
 a	
 collecQon	
 of	
 small	
 graphs	

– BioinformaQcs	
 and	
 cheminformaQcs	

– Well	
 studied	

•  Large	
 graphs	

– One	
 large	
 graph,	
 aka	
 “network”	

– Social	
 network,	
 and	
 knowledge	
 representaQon	
 	

– Less	
 studied	

3	

Classes	
 of	
 Large	
 Graphs	

•  Random	
 graphs	

– Node	
 degree	
 is	
 constrained	

– Less	
 common	

•  Scale-­‐free	
 graphs	

– DistribuQon	
 of	
 node	
 degree	
 follows	
 power	
 law	

– Most	
 large	
 graphs	
 are	
 scale-­‐free	

– Small	
 world	
 phenomena	
 &	
 hubs	

– Harder	
 to	
 parQQon	

4	

Classes	
 of	
 Large	
 Graphs	

5	

Organic	
 Growth	
 -­‐>	
 Scale	
 Free	

6	

Examples	
 of	
 Organic	
 Growth	

7	

GeneraQng	
 a	
 Large	
 Graph	

•  Random	
 graph	

– Fix	
 the	
 number	
 of	
 nodes	
 (no	
 growth)	

– Each	
 edge	
 connects	
 two	
 random	
 nodes	

•  Scale-­‐free	
 graph	

– Copy	
 model	

•  Add	
 new	
 node	
 	

–  Take	
 percentage	
 of	
 links	
 from	
 another	
 node	

– Kronecker	
 graphs	

8	

Kronecker	
 Graph	
 Example	

•  Epinions	
 (N=76K,	
 E=510K)	

•  Fifng	
 Qme	
 =	
 2	
 hours	

•  Real	
 and	
 Kronecker	
 graphs	
 are	
 close	

9	

Let’s	
 Go	
 Hyper!	

•  Hyper-­‐edge	

– A	
 tradiQonal	
 edge	
 is	
 binary	

– A	
 hyper	
 edge	
 relates	
 n	
 nodes	

•  Order	
 can	
 be	
 important	

•  Child-­‐of	
 edge	
 versus	
 father,	
 mother,	
 child	
 hyper-­‐edge	

•  Hyper-­‐node	

– A	
 tradiQonal	
 node	
 represents	
 one	
 enQty	

– Hyper	
 node	
 represents	
 a	
 set	
 of	
 nodes	

•  Person	
 node	
 versus	
 family	
 hyper-­‐node	

10	

Roadmap	

•  Intro	
 to	
 Graphs	

•  Social	
 Networks	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Web	
 of	
 Data	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Systems	

•  Current	
 Research	
 DirecQons	

11	

Social	
 Networks	

•  Scale	

–  LinkedIn	

•  70	
 million	
 users	

–  Facebook	

•  500	
 million	
 users	

•  65	
 billion	
 photos	

•  Queries	

– Alice’s	
 friends	

–  Photos	
 with	
 friends	

•  Rich	
 graph	

–  Types,	
 alributes	

Hillary

Bob Alice

Chris David

FranceEd George

Hillary

Bob Alice

Chris David

FranceEd George

Photo1

Photo2

Photo3

Photo4
Photo5 Photo6

Photo8

Photo7

12	

Social	
 Networks:	
 Data	
 Model	

•  Node	

–  ID,	
 type,	
 alributes	

•  Edge	

– Connects	
 two	
 nodes	

– DirecQon,	
 type,	
 alributes	

	
 	

Hillary

Bob Alice

Chris David

FranceEd George

Hillary

Bob Alice

Chris David

FranceEd George

Photo1

Photo2

Photo3

Photo4
Photo5 Photo6

Photo8

Photo7

Manages BobAlice

BobAlice

Manages

Managed-­‐by

App	

	

	

	

System	

13	

Managing	
 Graph	
 Data	

•  Here	
 we	
 focus	
 on	
 online	
 access	

– Rather	
 than	
 offline	
 access	
 	

•  Network	
 analyQcs	
 and	
 graph	
 mining	

•  Queries	

– Read	

•  Updates	

– Data	
 update:	
 change	
 node	
 payload	

– Structural	
 update:	
 modify	
 nodes	
 and	
 edges	

14	

Updates:	
 API	

•  add-­‐node(node-­‐id,	
 payload)	

•  remove-­‐node(node-­‐id)	

•  update-­‐node(node-­‐id,	
 payload)	

•  add-­‐edge(s-­‐node-­‐id,	
 d-­‐node-­‐id)	

•  remove-­‐edge(s-­‐node-­‐id,	
 d-­‐node-­‐id)	

15	

Graph	
 Query	
 Languages	

•  Several	
 languages	

•  Trade-­‐off	

– Expressiveness	

– ExecuQon	

•  Regular	
 language	
 reachability	

– Used	
 in	
 Horton	

RL	
 SQL	

16	

Regular	
 Language	

•  Query	
 is	
 a	
 regular	
 expression	

–  Sequence	
 of	
 node	
 and	
 edge	
 predicates	

•  Example	

–  Find	
 Alice’s	
 photos	

–  Photo,	
 tags,	
 Alice	

– Query	
 =	
 	

•  Node:	
 type=photo,	
 	

•  Edge:	
 	
 type=tags,	
 	

•  Node:	
 type=person,	
 name	
 =	
 Alice	

–  Result:	
 matching	
 paths	

17	

Query	
 Language	
 Operators	

•  ProjecQon	

– Alice’s	
 photos	

– SELECT	
 photo	
 FROM	
 photo,	
 tags,	
 Alice	

•  OR	

–  (Photo	
 |	
 video),	
 tags,	
 Alice	

•  Kleene	
 star	

– Alice’s	
 org	
 chart	

– Alice,	
 (manages,	
 person)*	

18	

Example:	
 CodeBook	
 -­‐	
 Graph	

19	

1.   Person,	
 FileOwner>,	
 File,	
 FileOwner<,	
 Person	

	

2.   Person,	
 DiscussionOwner>,	
 Discussion,	
 DiscussionOwner<,	
 Person	

	

3.   Person,	
 WorkItemOwner>,	
 WorkItem,	
 WorkItemOwner<	
 ,	
 Person	

	

4.   Person,	
 Manages<,	
 Person,	
 Manages>,	
 Person	

	

5.   Person,	
 WorkItemOwner>,	
 WorkItem,	
 MenQons>,	
 File,	
 FileOwner<,	
 Person	

	

6.   Person,	
 FileOwner>,	
 File,	
 MenQons>,	
 WorkItem,	
 MenQons>,	
 File,	
 FileOwner<,	
 Person	

•  Who	
 are	
 my	
 colleagues?	

•  Who	
 is	
 calling	
 my	
 code?	

•  Who	
 introduced	
 a	
 bug	
 in	
 my	
 code?	

Example:	
 CodeBook	
 -­‐	
 Queries	

20	

Example	
 ExecuQon	
 Engine	

•  ExecuQng	
 RL	
 query	

1.  Build	
 a	
 FSM	

2.  OpQmize	
 FSM	

3.  Execute	
 FSM	
 using	
 distributed	
 graph	
 traversal	
 	

21	

Alice,	
 Tags,	
 Photo	

Traversal	
 similar	
 to	
 Breadth	

First	

Answer	
 Paths:	

Alice,	
 Tags,	
 Photo1	

Alice,	
 Tags,	
 Photo8	

Alice	
 Tags	
 Photo	

Centralized	
 Query	
 ExecuQon	

Hillary

Bob Alice

Chris David

FranceEd George

Photo1

Photo2

Photo3

Photo4
Photo5 Photo6

Photo8

Photo7

22	

Distributed	
 Query	
 ExecuQon	

Hillary

Bob Alice

Chris David

FranceEd George

Photo1

Photo2

Photo3

Photo4
Photo5 Photo6

Photo8

Photo7

Par99on	
 2	

Par99on	
 1	

Alice,	
 Tags,	
 Photo,	
 Tags,	
 Hillary	

23	

Alice,	
 Tags,	
 Photo,	
 Tags,	
 Hillary	

Alice	

Tags	

Photo	

Distributed	
 Query	
 ExecuQon	

Hillary

Bob Alice

Chris David

FranceEd George

Photo1

Photo2

Photo3

Photo4
Photo5 Photo6

Photo8

Photo7

Tags	

Hillary	

Alice	

Photo1	
 Photo8	

Step	
 1	

Step	
 2	

Step	
 3	

Par99on	
 1	

Par99on	
 2	

Hillary	

Par99on	
 1	

Par99on	
 2	
 FSM	

24	

Tags	
 	
 	
 	
 	
 	
 	
 .

Friend

Lives-­‐in

Tags

Li
ve
s-­‐
in

Taken-­‐in

Alice

City

Photo

Bob

Sub-­‐graph	
 Matching	

– From:	
 path	

–  Sequence	
 of	
 predicates	

– To:	
 sub-­‐graph	

–  Graph	
 palern	

	

	

– Sub-­‐graph	
 isomorphism	

Friend

Tags AlicePhoto

Tags AlicePhoto Bob

25	

Mappings	
 Are	
 Not	
 Rigid	

•  Example	

– Edge	
 are	
 enQQes	

•  Types,	
 alributes,	
 ids	

– SupporQng	
 edge	
 enQQes	

– SupporQng	
 hyper-­‐nodes	
 and	
 hyper-­‐edges	

Manages BobAlice ManagesAlice Bob

26	

Roadmap	

•  Intro	
 to	
 Graphs	

•  Social	
 Networks	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Web	
 of	
 Data	
 [WoD]	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Systems	

•  Current	
 Research	
 DirecQons	

27	

Example:	
 Linked	
 open	
 Data[LoD]	

•  Scale	
 	

– Hundreds	
 of	
 data	
 sets	

– 30B+	
 tuples	

•  Queries	

– SPARQL	

•  Domains	

hlp://www4.wiwiss.fu-­‐berlin.de/lodcloud/state/	

28	

Linked	
 Open	
 Data	
 Principles	

•  Four	
 basic	
 principles	
 [Berners-­‐Lee06]	

– Use	
 URIs	
 to	
 idenQfy	
 things.	

– Use	
 HTTP	
 URIs	
 to	
 dereference	
 URIs	

– Provide	
 structured	
 data	
 about	
 URI	
 in	
 RDF	

–  Include	
 links	
 to	
 related	
 URIs	
 	

29	

LoD	
 ApplicaQon	
 Example	

•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ozone	
 level	
 visualizaQon	

•  2	
 data	
 sets	
 	

– clean	
 air	
 status	
 [data.gov]	

– Castnet	
 site	
 informaQon	
 [epa.gov]	

•  2	
 SPARQL	
 queries	

data.
gov	

epa.
gov	

30	

Web	
 of	
 Data:	
 Data	
 Model	
 (1)	

•  Structured	
 data	

– Resource	
 DescripQon	
 Framework	
 (RDF)	
 [Manola04]	

•  Triples!	

1:subject, 2:predicate, 3:object

ex.: philippe, made, idmesh_paper:
1: http://data.semanticweb.org/person/philippe-cudre-mauroux

2: http://xmlns.com/foaf/0.1/made

3: http://data.semanticweb.org/conference/www/2009/paper/60	

	
 31	

Web	
 of	
 Data:	
 Data	
 Model	
 (2)	

•  Naturally	
 forms	
 (distributed)	
 graphs	

•  Nodes	

– URIs	
 [subjects]	

– URIs	
 /	
 literals	
 [objects]	

•  Edges	

– URIs	
 [predicates]	

– Directed	

	
 	

Philippe	
 Idmesh	

paper	

made	

32	

Web	
 of	
 Data:	
 Data	
 Model	
 (3)	

•  Example	

	
 	

33	

RDF	
 Schemas	
 (RDFS)	
 [Brickley04]	

•  Classes,	
 inheritance	

– Class,	
 Property,	
 SubClass,	
 SubProperty	

•  Constraints	
 on	
 structure	

– Constraints	
 on	
 subjects	
 (Domain)	

– Constraints	
 on	
 objects	
 (Range)	

•  CollecQons	

– List,	
 Bag	

•  ReificaQon	

Schemas	
 can	
 be	
 reused,	
 mixed	
 34	

RDFS	
 Example	

35	

Ontologies	
 (OWL)	
 [W3COWL09]	

– Very	
 expressive	
 schemas	
 (ontologies)	

– Based	
 on	
 DescripQon	
 Logics	

•  Exists	
 in	
 different	
 flavors	

– Example:	
 OWL	
 2	
 EL	
 axioms:	

class	
 inclusion	
 (SubClassOf)	

class	
 equivalence	
 (EquivalentClasses)	

class	
 disjointness	
 (DisjointClasses)	

object	
 property	
 inclusion	
 (SubObjectPropertyOf)	
 with	
 or	
 without	
 property	
 chains,	
 and	
 data	
 property	
 inclusion	
 (SubDataPropertyOf)	

property	
 equivalence	
 (EquivalentObjectProperQes	
 and	
 EquivalentDataProperQes),	

transi9ve	
 object	
 proper9es	
 (TransiQveObjectProperty)	

reflexive	
 object	
 proper9es	
 (ReflexiveObjectProperty)	

domain	
 restric9ons	
 (ObjectPropertyDomain	
 and	
 DataPropertyDomain)	

range	
 restric9ons	
 (ObjectPropertyRange	
 and	
 DataPropertyRange)	

asser9ons	
 (SameIndividual,	
 DifferentIndividuals,	
 ClassAsserQon,	
 ObjectPropertyAsserQon,	
 DataPropertyAsserQon,	

NegaQveObjectPropertyAsserQon,	
 andNegaQveDataPropertyAsserQon)	

func9onal	
 data	
 proper9es	
 (FuncQonalDataProperty)	

keys	
 (HasKey)	

	

–  Inference!	
 ex.:	
 TransitiveObjectProperty(hasAncestor)
hasAncestor(x, y) ∧ hasAncestor(y, z) → hasAncestor(x, z)

36	

RDF	
 Storage	
 (1)	

• XML/JSON	
 Serializa9on	

– Exchange	
 format	

•  Not	
 meant	
 for	
 humans	
 (ugly)	

•  Not	
 meant	
 for	
 DBMSs	
 (verbose)	

	

– Example:	

!<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"!

 ! xmlns:db="http://dbpedia.org/resource/">!
 !<rdf:Description rdf:about="http://dbpedia.org/resource/Massachusetts">!
 ! !<db:Governor>!
 ! !<rdf:Description rdf:about="http://dbpedia.org/resource/Deval_Patrick" />!

 ! !</db:Governor>!
 ! !<db:Nickname>Bay State</db:Nickname>!
 ! ! !<db:Capital>!

 ! ! !<rdf:Description rdf:about="http://dbpedia.org/resource/Boston"> !
 ! ! ! !<db:Nickname>Beantown</db:Nickname>!
 ! ! !</rdf:Description>!

 ! ! !</db:Capital>!
 ! !</rdf:Description>!

!</rdf:RDF>!

37	

RDF	
 Storage	
 (2)	

• RDFa	

– Embedding	
 RDF	
 informaQon	
 in	
 HTML	
 pages	

– Supported	
 by	
 Google,	
 Yahoo,	
 etc	

– Example:	

 <body>!
 <div about="http://dbpedia.org/resource/Massachusetts">The Massachusetts governor is!
 !

! !Deval Patrick!
! !,!

 !
 the nickname is "Bay State",!
 and the capital!
 !

! !!
! ! has the nickname "Beantown".!
! !!

 !
 </div>!
 </body>!

38	

RDF	
 Storage	
 (3)	

•  Various	
 internal	
 formats	
 for	
 DBMSs	

– Giant	
 triple	
 table	
 (triple	
 stores)	

•  |subject|predicate|object|	

– Property	
 tables	

•  |subject|property1|property2|property3|…|	

– Sub-­‐graphs	

39	

WoD:	
 Workloads	

•  Bulk	
 inserts	

•  Read-­‐mostly	

– Node/triple	
 look-­‐ups	

– Distributed	
 enQty	
 retrieval	
 queries	

–  Sub-­‐graph	
 queries	

–  Path	
 queries	

–  Inference	
 queries	

•  Mostly	
 using	
 SPARQL	
 query	
 language	

[Prud'hommeaux08]	

– AlternaQves	
 exist,	
 e.g.,	
 “Thread:	
 A	
 Path-­‐Based	
 Query	

Language”	
 [McDonald11]	

40	

SPARQL	
 (1/2)	

•  DeclaraQve	
 query	
 language	
 for	
 SW	
 data	

•  SPJ	
 combinaQons	
 of	
 triple	
 pa4erns	

– E.g.,	
 “Retrieve	
 all	
 students	
 who	
 live	
 in	
 Sealle	
 and	

take	
 a	
 graduate	
 course”	

– Select	
 ?s	
 Where	
 {	

	
 	
 	
 	
 ?s	
 is_a	
 Student	
 	
 	

	
 	
 	
 	
 ?s	
 lives_in	
 Sealle	

	
 	
 	
 	
 ?s	
 takes	
 ?c	

	
 	
 	
 	
 ?c	
 is_a	
 GraduateCourse	
 }	

41	

SPARQL	
 Query	
 ExecuQon	

•  Typically	
 start	
 from	
 bound	
 variables	
 and	

performs	
 self-­‐joins	
 on	
 giant	
 triple	
 table	

– Select	
 ?s	
 Where	
 {	

	
 	
 	
 	
 ?s	
 is_a	
 Student	
 	
 	

	
 	
 	
 	
 ?s	
 lives_in	
 Sealle	

	
 	
 	
 	
 ?s	
 takes	
 ?c	

	
 	
 	
 	
 ?c	
 is_a	
 GraduateCourse	
 }	

–  	
 πs	
 σp=“is_a”	
 ∧	
 o=“Student”	

	
 	
 	
 	
 ⨝	
 πs	
 σp=“lives_in”	
 ∧	
 o=“Sealle”	

	
 	
 	
 	
 ⨝	
 πs	
 (σp=“takes”	
 	
 	
 o⨝s	
 	
 	
 σp=“is_a”	
 ∧	
 o=“GraduateCourse”)	

42	

SPARQL	
 (2/2)	

•  Beyond	
 conjuncQons	
 of	
 triple	
 palerns	

–  Named	
 graphs	

–  DisjuncQons	

•  UNION	
 	

•  OPTIONAL	
 (semi-­‐structured	
 data	
 model)	

–  Predicate	
 filters	

•  FILTER	
 (?price	
 <	
 30)	

–  Duplicate	
 handling	
 (bag	
 seman9cs)	

•  DISTINCT,	
 REDUCED	

– Wildcards	
 	

–  Nega9on	
 as	
 failure	

WHERE	
 {	
 ?x	
 foaf:givenName	
 	
 ?name	
 .	

	
 	
 	
 	
 	
 	
 	
 	
 	
 OPTIONAL	
 {	
 ?x	
 dc:date	
 ?date	
 }	
 .	

	
 	
 	
 	
 	
 	
 	
 	
 	
 FILTER	
 (!bound(?date))	
 }	

43	

SPARQL	
 1.1	
 [Harris11]	

•  Candidate	
 recommendaQon	

•  Adds	
 a	
 whole	
 new	
 set	
 of	
 beasts	

– Aggregates	

– Subqueries	

– Filters	

•  EXISTS,	
 NOT	
 EXISTS	

– Property	
 paths	
 (?	
 +	
 *	
 ^	
 /	
 |	
)	

–  Inference	
 queries	

•  Entailment	
 regimes[Glimm11]	

44	

Sub-­‐graph	
 Queries	
 (1)	

•  Molecule	
 queries	
 	

– Star-­‐shape	
 sub-­‐queries	

– Combining	
 properQes	
 of	
 a	
 given	
 enQty	

– E.g.,	
 “Retrieve	
 the	
 first	
 name,	
 last	
 name	
 and	
 full	

address	
 of	
 all	
 students”	

Student23	
 “Bob”	

first	
 name	

“Doe”	
 last	
 name	

address	

street	

zip	

city	

Main	
 st	

02144	

Brookline	

Course21	

takes	

12512	

student	
 ID	

45	

Sub-­‐graph	
 Queries	
 (2)	

•  Scope	
 queries	

– Retrieve	
 all	
 triples	
 within	
 a	
 certain	
 scope	
 from	
 a	

given	
 root	
 node	
 (typically	
 for	
 visualizaQon	

purposes)	

– E.g.,	
 scope	
 1	
 from	
 “Student23”	

Student23	
 “Bob”	

first	
 name	

“Doe”	
 last	
 name	

address	

street	

zip	

city	

Main	
 st	

02144	

Brookline	

takes	

12512	
 student	
 ID	

Course21	
 46	

Path	
 Queries	
 (1)	

•  Property	
 path	
 queries	

– Queries	
 on	
 series	
 of	
 predicates	

•  E.g.,	
 “find	
 all	
 professors	
 who	
 supervise	

students	
 following	
 courses”	

Student23	

“Bob”	

first	
 name	

“Doe”	

last	
 name	

supervises	

Prof32	

Is_a	

Professor	

takes	

12512	
 student	
 ID	

Course21	

47	

Path	
 Queries	
 (2)	

•  Various	
 sub-­‐flavors	

– Frequent	
 path	
 queries	

•  For	
 opQmizaQon	
 or	
 visualizaQon	
 purposes	

•  E.g.,	
 “Find	
 the	
 most	
 frequent	
 paths	
 of	
 length	
 2”	

– Regular	
 expressions	
 for	
 properQes	
 (SPARQL	
 1.1)	

•  ?	
 +	
 *	
 ^	
 /	
 |	
 	

•  E.g.,	
 “find	
 reachable	
 friends	
 through	
 2	
 different	
 paths”	

–  SELECT	
 *	
 WHERE	
 {	
 	

:John	
 (foaf:friendOf|urn:friend)+	
 ?friend.	
 }	

48	

Inference	
 Queries	

•  AddiQonal	
 data	
 can	
 be	
 inferred	
 using	
 various	
 sets	

of	
 logical	
 rules	

•  Specify	
 which	
 ones	
 to	
 use	
 by	
 entailment	
 regimes	

[Glimm11]	

–  RDF	
 Schema	
 has	
 14	
 entailment	
 rules	
 	

•  E.g.,	
 (p,rdfs:domain,x)	
 &&	
 (u,	
 p,	
 y)	
 	

	
 	
 	
 	
 =>	
 (u	
 rdf:type	
 x)	

– OWL	
 2	
 RL	
 has	
 70+	
 entailment	
 rules.	

•  E.g.,	
 (p,rdf:type,owl:FuncQonalProperty	
)	
 &&	
 (x,	
 p,	
 y1)	
 &&	

(x,p,y2)	

	
 	
 	
 	
 =>	
 (y1,	
 owl:sameAs,	
 y2)	

	

49	

RDF/OWL	
 Benchmarks	

•  Large	
 choice	
 of	
 benchmarks,	
 e.g.,	
 focusing	
 on	

– Large	
 knowledge	
 bases	
 (LUBM)	
 [Guo05]	

– Library	
 search	
 and	
 visualizaQon	
 (Barton)	
 [Abadi07]	

– Linked	
 Open	
 Data	
 (BSBM)	
 [Bizer11]	

– RDF	
 AnalyQcs	
 (BowlognaBench)	
 [DemarQni11]	

50	

Roadmap	

•  Intro	
 to	
 Graphs	

•  Social	
 Networks	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Web	
 of	
 Data	
 [WoD]	

–  Data	
 Model	

–  Queries	

–  Processing	

•  Systems	

•  Current	
 Research	
 DirecQons	

51	

WoD	
 Systems	

•  Many	
 interesQng	
 approaches/systems	

•  Only	
 very	
 small	
 sample	
 here	

52	

RDF-­‐3X	
 [Neumann08]	

•  Max	
 Planck	
 InsQtut	
 für	
 InformaQk	

– Thomas	
 Neumann	
 &	
 Gerhard	
 Weikum	

•  Open-­‐Source	

•  Triple-­‐table	
 storage	

•  No	
 turning	
 knobs	

– Workload-­‐independent	
 physical	
 design	

•  Reduced	
 instrucQon	
 set	

– Merge-­‐joins	
 over	
 sorted	
 lists	

53	

RDF-­‐3X:	
 Storage	
 and	
 Indexing	

•  DicQonary	
 encoding	
 of	
 all	
 literals	

•  ExhausQve-­‐indexing	
 approach	

– Clustered	
 B+-­‐trees	
 on	
 all	
 six	
 SPO	
 permutaQons	

(see	
 also	
 Hexastore	
 [Weiss08])	

– Also	
 on	
 six	
 binary	
 and	
 three	
 unary	
 projecQons	

•  Indexing	
 count	
 aggregates	

– Support	
 for	
 versioning	
 by	
 two	
 addiQonal	
 fields	
 for	

each	
 triple	

•  Created	
 and	
 deleted	
 Qmestamps	

54	

RDF-­‐3X:	
 Compression	

•  Triples	
 stored	
 at	
 the	
 leaves	
 of	
 the	
 tree	

•  Value1,	
 Value2,	
 Value3	

– Neighboring	
 triples	
 are	
 oFen	
 very	
 similar	

•  Value1	
 and	
 Value2	
 the	
 same	

•  Leaf	
 pages	
 use	
 byte-­‐wise	
 compression	

– Store	
 deltas	
 for	
 each	
 value	

•  Triple	
 oFen	
 encoded	
 in	
 a	
 single	
 byte	

55	

RDF-­‐3X:	
 Query	
 OpQmizaQon	

•  Triple	
 palern	

–  Single	
 range	
 scan	

•  MulQple	
 triple	
 palerns	

– Order-­‐preserving	
 merge-­‐joins	

–  Join	
 ordering	

•  Dynamic	
 programming;	
 tradeoff	
 between	

–  Use	
 literals	
 in	
 triple	
 palerns	
 as	
 index	
 prefix	

–  Produce	
 interesQng	
 orders	
 for	
 subsequent	
 merge-­‐joins	

•  Plan	
 pruning	
 based	
 on	
 esQmated	
 execuQon	
 costs	

•  Costs	
 based	
 on	
 selecQvity	
 esQmates	

–  Histograms	

–  Join-­‐path	
 cardinaliQes	

56	

Oracle	
 SemanQc	
 Web	
 Technologies	

•  Part	
 of	
 Oracle	
 Database	
 11g	

–  hlp://www.oracle.com/technetwork/database/
opQons/semanQc-­‐tech/index.html	

•  RDF	
 data	
 stored	
 in	
 two	
 main	
 tables	

– Nodes,	
 edges	

•  OpQonal	
 B-­‐tree	
 indexing	

–  add_sem_index(column_list)	
 	

•  Mixing	
 SQL	
 and	
 SPARQL	

–  SEM_MATCH	

•  Efficient	
 inference	

	

57	

Oracle:	
 Triple	
 Storage	

58	

Oracle:	
 Inference	

•  Inference	
 done	
 using	
 forward	
 chaining	

–  Triples	
 inferred	
 and	
 stored	
 ahead	
 of	
 query	
 Qme	

•  Various	
 profiles	
 supported	

–  RDFS,	
 OWL	
 2	
 RL,	
 SKOS,	
 subset	
 of	
 OWL	
 2	
 EL	

•  Large	
 scale	
 owl:sameAs	
 handling	

–  Compact	
 materializaQon	
 of	
 owl:sameAs	
 closure	

•  User-­‐defined	
 SWRL-­‐like	
 rules	

•  Incremental,	
 parallel	
 reasoning	

	
 	

59	

OWLIM	
 [Bishop11]	

•  Commercial,	
 naQve	
 RDF/OWL	
 DBMS	

– Comes	
 in	
 different	
 flavors	

•  Main-­‐memory	

•  Disk-­‐based	

–  Persistency	
 through	
 N-­‐triple	
 files	

– Scalable	
 forward-­‐chaining	
 inference	

– Several	
 interesQng	
 search/ranking	
 features	

60	

OWLIM:	
 Searching	
 &	
 Ranking	

•  Full-­‐text	
 search	
 support	

– Arbitrary	
 string	
 operaQons	
 in	
 SPARQL	

•  RDF	
 ranking	

– Relevance	
 of	
 enQQes	
 based	
 on	
 their	

interconnectedness	
 	

•  RDF	
 “priming”	

– Contextualized	
 query	
 processing	
 based	
 on	
 starQng	

nodes	

•  Publish/subscribe	
 mechanisms	

61	

dipLODocus[RDF]	
 [Wylot11]	

•  Blazing-­‐fast,	
 hybrid	
 storage	
 system	
 for	
 RDF	

– Aggressive	
 compression	
 (lexicographical	
 tree)	

– Pre-­‐computed	
 joins	
 (declaraQve	
 molecule	
 storage)	

– Efficient	
 support	
 for	
 aggregate/analyQc	
 operaQons	

on	
 literals	

key

Hash-Table

Clusters

Template Lists

disks

Buffered
operations

Template
ManagerQuery

Processor
Query

Optimizer Cluster
Manager

GetLists/
GetClusters Update Cluster

U
pd

at
e

Te
m

pl
at

e

Queries
& Inserts

Results

 W
or

kl
oa

d

URI

hlp://diuf.unifr.ch/xi/diplodocus	

	

62	

Graph	
 Systems	

•  RelaQonal:	
 SQL	

•  Triple	
 store:	
 SPARQL	

•  Custom	
 graph	
 server:	
 API	

63	

Graph	
 Servers	

•  Neo4j	

•  InfiniteGraph	

•  Google	
 Pregel	

•  MicrosoF	
 Horton	
 &	
 Trinity	

•  DEX	

•  …	

64	

Backup	

65	

Backup	

66	

Backup	

67	

Backup	

68	

Infinite	
 Graph	

Vertex	
 alice	
 =	
 myGraph.addVertex(new	
 Person(“Alice”));	
 	

Vertex	
 bob	
 =	
 myGraph.addVertex(new	
 Person(“Bob”));	
 	

Vertex	
 carlos	
 =	
 myGraph.addVertex(new	
 Person(“Carlos”));	
 	

Vertex	
 charlie	
 =	
 myGraph.addVertex(new	
 Person(“Charlie”));	

	

alice.addEdge(new	
 MeeQng(“Denver”,	
 “5-­‐27-­‐10”),	
 bob);	

bob.addEdge(new	
 Call(Qmestamp),	
 carlos);	

carlos.addEdge(new	
 Payment(100000.00),	
 charlie);	

bob.addEdge(new	
 Call(Qmestamp),	
 charlie);	

	

Alice	
 Carlos	
 Charlie	
 Bob	

Meets	
 Calls	
 Pays	

Calls	

69	

Infinite	
 Graph	
 Architecture	

IG	
 Core/API	

ConfiguraQon	
 NavigaQon	

ExecuQon	

Management	

Extensions	

Blueprints	

User Apps

ObjecQvity/DB	
 Distributed	
 Database	

Session	
 /	
 TX	

Management	
 Placement	

70	

AcQve	
 Research	
 Topics	

•  TransacQons	

•  ParQQoning	

•  Indexing	

•  Parallel	
 execuQon	

71	

ParQQoning	
 A	
 Large	
 Graph	

•  MoQvaQon	

– Graph	
 too	
 big	
 for	
 one	
 machine	

•  SoluQons	

– Hash	
 parQQon	

– METIS	

– Local	
 approaches	

– Hierarchical	
 approaches	

	

72	

Conductance	

•  Graph	
 G(V,E),	
 search	
 for	
 subset	
 S	
 of	
 V	

•  V	
 =	
 S	
 union	
 V\S	

•  Find	
 S	
 with	
 small	
 conductance	

S	
 	

V	
 \	
 S	
 	

73	

Evolving	
 set	
 parQQoning	
 algorithm	

•  Randomized	
 algorithm	

•  ApproximaQon	
 guarantee	

•  Local	
 par99oning	

74	

Hierarchical	
 ParQQoning	

•  Hierarchical	
 communiQes	

•  Modularity	
 metric	

– Each	
 node	
 joins	
 the	
 neighbor	
 that	
 maximizes	

modularity	

75	

Hierarchical	
 ParQQoning	

76	

TransacQons	

•  MoQvaQon	

– Correctness	

•  Simplifies	
 applicaQons	

•  Workload	
 characterisQcs	

– Dominated	
 by	
 reads	

– Small	
 updates	

77	

Centralized	
 TransacQons	

•  SoluQons	

– Locking	
 schemes	

– OpQmisQc	
 concurrency	
 control	

•  MulQ-­‐versioning:	
 snapshot	
 isolaQon	

•  Distributed	
 transacQons	

78	

Distributed	
 TransacQons	

•  MoQvaQon	

– Graph	
 too	
 large	
 for	
 one	
 machine	

– Graph	
 is	
 parQQoned	

– ReplicaQon	
 becomes	
 requirement	

•  Availability	

•  Scalability	

79	

WoD:	
 Current	
 Research	
 DirecQons	

•  Read-­‐Write	
 Linked	
 Data	

•  Large-­‐Scale	
 Inference/Query	
 Processing	

•  PublicaQon	
 of	
 Linked	
 Data	

•  EnQty	
 Matching	

80	

(1)	
 Read-­‐Write	
 Linked	
 Data	

•  How	
 to	
 handle	
 updates	
 /	
 transacQons?	

•  Protocols	

– HTTP	
 PUT	
 to	
 overwrite	
 file	
 [Berners-­‐Lee10]	

– SPARQL	
 update	
 [Gearon11]	

•  Updates	
 &	
 transacQon	
 at	
 the	
 back-­‐end	

– See	
 for	
 instance	
 x-­‐RDF-­‐3x	

•  Also	
 interesQng	
 problems	
 relaQng	
 to	
 lineage	

– Dublin	
 Core,	
 W3C	
 Provenance	
 Group,	
 OPM…	

81	

(2)	
 Large-­‐Scale	
 Inference/Query	
 Processing	

•  Large-­‐scale	
 inference	

– Old	
 topic,	
 hard	

–  Inference	
 onlarge	
 A-­‐Boxes	
 (instances)	

– Distributed	
 inference	
 on	
 heterogeneous,	

conflicQng	
 data	
 sets	

•  Distributed	
 query	
 processing	

– ParQQoning/caching	
 triples	

– OpQmizing	
 queries	
 across	
 N	
 SPARQL	
 end-­‐points	

82	

(3)	
 PublicaQon	
 of	
 Linked	
 Data	
 	

•  From	
 websites/text	

– EnQty	
 extracQon,	
 NLP	

•  From	
 relaQonal	
 databases	

– Rel2rdf	

•  Knowledge	
 elicitaQon	

– Crowdsourcing	

83	

EnQty	
 Matching	

•  The	
 great	
 thing	
 about	
 unique	
 iden9fiers	
 is	

that	
 there	
 are	
 so	
 many	
 to	
 choose	
 from	
 	

–  ID	
 jungle!	

– Hundreds	
 of	
 idenQfier	
 for	
 one	
 referent	

➠ 	
 Matching	
 URIs	
 at	
 LoD	
 scale	

84	

WoD:	
 To	
 Go	
 Further	

•  1-­‐day	
 tutorial	
 on	
 the	
 SemanQc	
 Web	
 and	
 WoD	

–  hlp://people.csail.mit.edu/pcm/SemWebTutorial.html	

	

•  InternaQonal	
 SemanQc	
 Web	
 Conf.	
 2011	

–  hlp://iswc2011.semanQcweb.org/	

•  List	
 of	
 large	
 triple	
 stores	

–  hlp://www.w3.org/wiki/LargeTripleStores	

	

•  Some	
 benchmarks	
 &	
 results	
 for	
 triple	
 stores	

–  hlp://www.w3.org/wiki/RdfStoreBenchmarking	

85	

References	
 (1)	

[Manola04]	
 Frank	
 Manola	
 and	
 Eric	
 Miller	
 (Eds):	
 RDF	
 Primer.	
 W3C	
 RecommendaQon	
 (2004).	
 hlp://www.w3.org/TR/rdf-­‐primer/	

	

[Brickley04]	
 Dan	
 Brickley	
 and	
 R.V.	
 Guha	
 (Eds.):	
 RDF	
 Vocabulary	
 DescripQon	
 Language	
 1.0:	
 RDF	
 Schema.	
 W3C	
 RecommendaQon	

(2004).	
 hlp://www.w3.org/TR/rdf-­‐schema/	

	

[W3COWL09]	
 W3C	
 OWL	
 Working	
 Group:	
 OWL	
 2	
 Web	
 Ontology	
 Language	
 Document	
 Overview.	
 W3C	
 RecommendaQon	
 (2009).	

hlp://www.w3.org/TR/owl2-­‐overview/	

	

[Berners-­‐Lee06]	
 Tim	
 Berners-­‐Lee:	
 Design	
 Issues:	
 Linked	
 Data.	
 hlp://www.w3.org/DesignIssues/LinkedData	

	

[McDonal11]	
 Glenn	
 McDonald:	
 Thread:	
 A	
 Path-­‐Based	
 Query	
 Language	
 for	
 Graph	
 Databases.	
 SemTech	
 2011.	
 hlp://
semtech2011.semanQcweb.com/uploads/handouts/SemTech2011_Thread_4144_3497.pdf	

	

[Prud'hommeaux08]	
 Eric	
 Prud'hommeaux	
 and	
 Andy	
 Seaborne:	
 SPARQL	
 Query	
 Language	
 for	
 RDF.	
 W3C	
 RecommendaQon	
 (2008).	

hlp://www.w3.org/TR/rdf-­‐sparql-­‐query/	

	

[Glim11]	
 Birte	
 Glimm	
 and	
 Chimezie	
 Ogbuji	
 (Eds):	
 SPARQL	
 1.1	
 Entailment	
 Regimes.	
 W3C	
 Working	
 DraF	
 (2011).	
 hlp://
www.w3.org/TR/sparql11-­‐entailment/	

	

[Harris11]	
 Steve	
 Harris	
 and	
 Andy	
 Seaborne:	
 SPARQL	
 1.1	
 Query	
 Language.	
 W3C	
 Working	
 DraF	
 (2011).	
 hlp://www.w3.org/TR/
sparql11-­‐query/	

	

[Berners-­‐Lee10]	
 Tim	
 Berners-­‐Lee:	
 Design	
 Issues:	
 Read-­‐Write	
 Linked	
 Data.	
 hlp://www.w3.org/DesignIssues/
ReadWriteLinkedData.html	

	

86	

References	
 (2)	

[Ogbuji11]	
 Chimezie	
 Ogbuji.	
 SPARQL	
 1.1	
 Graph	
 Store	
 HTTP	
 Protocol.	
 W3C	
 Working	
 DraF	
 (2011).	
 hlp://www.w3.org/TR/sparql11-­‐
hlp-­‐rdf-­‐update/	

	

[Gearon11]	
 Paul	
 Gearon,	
 Alexandre	
 Passant,	
 and	
 Axel	
 Polleres:	
 SPARQL	
 1.1	
 Update.	
 W3C	
 Working	
 DraF	
 (2011).	
 hlp://
www.w3.org/TR/2011/WD-­‐sparql11-­‐update-­‐20110512/	

	

[Abadi07]	
 Daniel	
 J.	
 Abadi,	
 Adam	
 Marcus,	
 Samuel	
 R.	
 Madden,	
 and	
 Kate	
 Hollenbach:	
 Using	
 The	
 Barton	
 Libraries	
 Dataset	
 As	
 An	
 RDF	

benchmark.	
 MIT-­‐CSAIL-­‐TR-­‐2007-­‐036	
 (2007).	

	

[Guo05]	
 Yuanbo	
 Guo,	
 Zhengxiang	
 Pan	
 and	
 Jeff	
 Heflin.	
 LUBM:	
 A	
 Benchmark	
 for	
 OWL	
 Knowledge	
 Base	
 Systems.	
 Journal	
 of	
 Web	

SemanQcs	
 3(2),	
 2005.	
 	

	

[Bizer11]	
 Chris	
 Bizer	
 et	
 al.:	
 The	
 Berlin	
 SPARQL	
 Benchmark	
 (BSBM).	
 hlp://www4.wiwiss.fu-­‐berlin.de/bizer/
BerlinSPARQLBenchmark/	

	

[DemarQni11]	
 Gianluca	
 DemarQni,	
 Iliya	
 Enchev,	
 Joël	
 Gapany,	
 and	
 Philippe	
 Cudré-­‐Mauroux:	
 BowlognaBench—Benchmarking	
 RDF	

AnalyQcs.	
 SIMPDA	
 2011.	

	

[Neumann08]	
 Thomas	
 Neumann	
 and	
 Gerhard	
 Weikum:	
 RDF-­‐3X:	
 a	
 RISC-­‐style	
 engine	
 for	
 RDF.	
 PVLDB	
 1(1),	
 2008.	

	

[Weiss08]	
 Cathrin	
 Weiss	
 and	
 PanagioQs	
 Karras	
 and	
 Abraham	
 Bernstein:	

Hexastore:	
 sextuple	
 indexing	
 for	
 semanQc	
 web	
 data	
 management.	
 PVLDB	
 1(1),	
 2008.	
 	

	

[Bishop11]	
 Barry	
 Bishop,	
 Atanas	
 Kiryakov,	
 Damyan	
 Ognyanoff,	
 Ivan	
 Peikov,	
 Zdravko	
 Tashev,	
 and	
 Ruslan	
 Velkov:	
 OWLIM:	
 A	
 family	

of	
 scalable	
 semanQc	
 repositories.	
 SemanQc	
 Web	
 Journal	
 2(1),	
 2011.	
 	

	

[Wylot11]	
 Marcin	
 Wylot,	
 Jige	
 Pont,	
 Mariusz	
 Wisniewski,	
 and	
 Philippe	
 Cudre-­‐Mauroux:	
 dipLODocus[RDF]-­‐-­‐Short	
 and	
 Long-­‐Tail	
 RDF	

AnalyQcs	
 for	
 Massive	
 Webs	
 of	
 Data.	
 ISWC	
 2011.	
 87	

Acknowledgements	

•  Orleans	
 	

team	
 (MSR):	

•  Academic	
 collaborators:	

–  Jiaqing	
 Du	
 (EPFL),	
 Mohamed	
 Fathallah	
 (MSR),	
 Sherif	
 Sakr	
 (NICTA),	

Mohamed	
 Sarwat	
 (UMN),	
 Willy	
 Zwaenepoel	
 (EPFL)	

•  The	
 whole	
 eXascale	
 Infolab	
 team	
 @	
 U.	
 Fribourg	

–  hgp://diuf.unifr.ch/xi/	

88	

Conclusions	

•  New	
 applicaQon	
 domains	
 require	
 new	
 systems	

– New	
 pla�orms	
 for	
 Social	
 networks	
 &	
 the	
 WoD	

•  In	
 the	
 future	
 we	
 expect	
 increasing	
 convergence	

between	
 social	
 networks	
 and	
 the	
 Web	
 of	
 data	

– Data	
 Models:	
 SNs	
 models	
 are	
 richer	
 and	
 more	
 diverse	

•  But	
 as	
 we	
 pointed	
 out	
 they	
 can	
 be	
 mapped	
 onto	
 RDF	

– Queries:	
 Nothing	
 standard	
 for	
 SNs,	
 SPARQL++	
 (i.e.,	

with	
 reachability)	
 might	
 well	
 take	
 over	

– Graph	
 Systems	
 are	
 already	
 transacQonal	
 for	
 SNs	

•  Systems	
 are	
 increasingly	
 focusing	
 on	
 transacQons	
 for	
 WoD	

89	

