Exploration of Deep Web Repositories

Nan Zhang, The George Washington University Gautam Das, University of Texas, Arlington

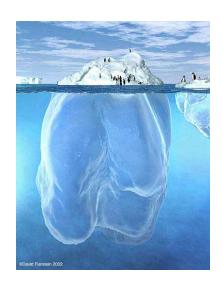
Outline

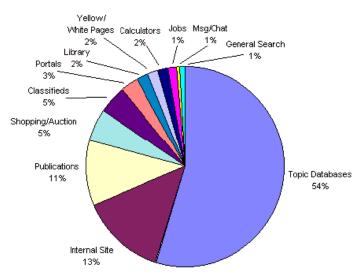
- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Solution** Crawling
- Sampling
- Data Analytics

The Deep Web

Deep Web vs Surface Web

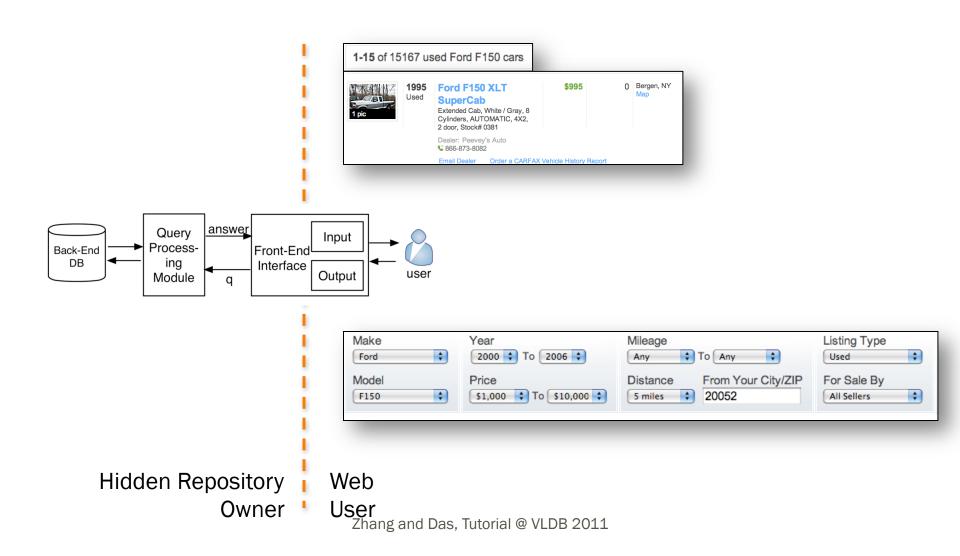
- Dynamic contents, unlinked pages, private web, contextual web, etc
- Estimated size: 91,850 vs 167 tera bytes^[1], hundreds or thousands of times larger than the surface web^[2]





- [1] SIMS, UC Berkeley, How much information? 2003
- [2] Bright Planet, Deep Web FAQs, 2010, http://www.brightplanet.com/the-deep-web/

Hidden Web Repositories



Deep Web Repository: Example I

Enterprise Search Engine's Corpus

Unstructured data

Keyword search

Top-k

CDC - Asthma and Allergies - Prevention of Occupational ...

ASTHMA AND ALLERGIES. Prevention of Occupational Asthma: Introduction. ... Smith AM, Bernstein DI. Management of work-related asthma. ...

www.cdc.gov/niosh/topics/asthma/OccAsthmaPrevention.html

More results from www.cdc.gov/niosh/topics/asthma

Lower Airway Rhinovirus Burden and the Seasonal Risk of Asthma Exacerbation.

Denlinger LC, Sorkness RL, Lee WM, Evans M, Wolff M, Mathur S, Crisafi G, Gaworski K, Pappas Am J Respir Crit Care Med. 2011 Aug 4. [Epub ahead of print]

PMID: 21816938 [PubMed - as supplied by publisher]

Related citations

First Aid/CPR/AED - Professional Rescuers

... one- and two-rescuer); AED; Optional training in use of epinephrine auto-injectors and asthma inhalers available. Course ...

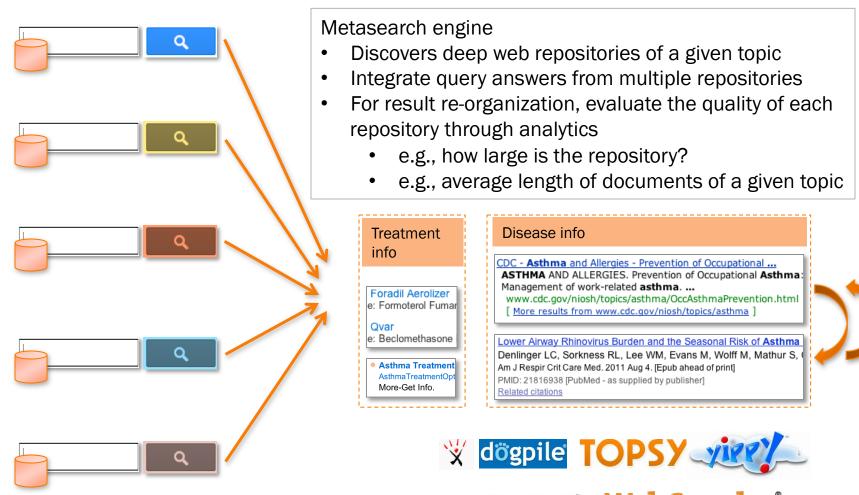
Brand Name: Foradil Aerolizer

Generic Name: Formoterol Fumarate Inhalation Powder

Brand Name: Qvar

Generic Name: Beclomethasone Dipropionate HFA

Exploration: Example I



Example II

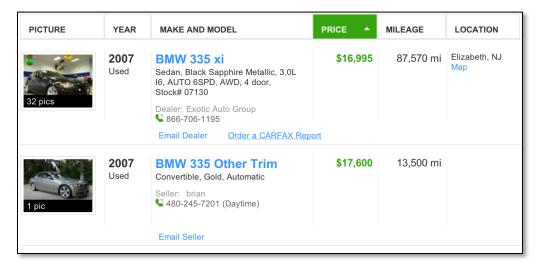
Yahoo! Auto, other online e-commerce websites

Structured data

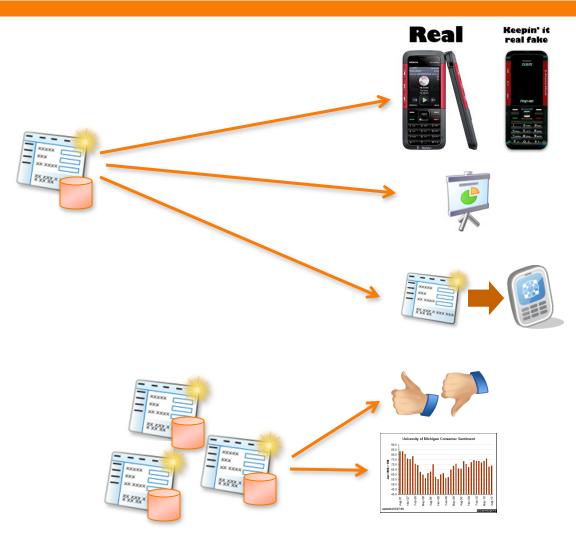
Form-like search

Top-1500





Exploration: Example II



Third-party services for an individual repository

- Find fake products
- Price distribution
- Construction of a universal mobile interface

Third-party services for multiple repositories

- Repository comparison
- Consumer behavior analysis

Main Tasks

- Resource discovery
- Data integration
- Single-/Cross- site analytics

Example III

Semi-structured data

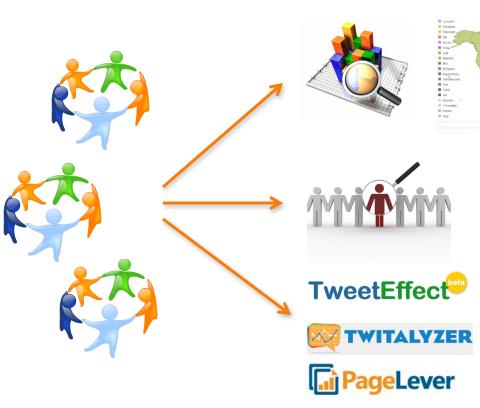
Graph browsing

Local view

Picture from Jay Goldman, Facebook Cookbook, O'Reiley Media, 2008.

Zhang and Das, Tutorial @ VLDB 2011

Exploration: Example III





For commercial advertisers:

- Market penetration of a social network
- "buzz words" tracking

For private detectors:

- Find pages related to an individual For individual page owners:
- Understand the (relative) popularity of ones own page
- Understand how new posts affect the popularity
- Understand how to promote the page

Main Tasks: resource discovery and data integration less of a challenge, analytics on very large amounts of data becomes the main challenge.

Summary of Main Tasks/Obstacles

Find where the data are

- Resource discovery: find URLs of deep web repositories
- Required by: Metasearch engine, shopping website comparison, consumer behavior modeling, etc.

Understand the web interface

- Required by almost all applications.
- Explore the underlying data
 - crawling, sampling, and analytics
 - Required by: Metasearch engine, keep it real fake, price prediction, universal mobile interface, shopping website comparison, consumer behavior modeling, market penetration analysis, social page evaluation and optimization, etc.

Zhang and Das, Tutorial @ VLDB 2011

Covered by many recent tutorials [Weikum and Theobald PODS 10, Chiticariu et al SIGMOD 10, Dong and Nauman VLDB 09, Franklin, Halevy and Maier VLDB 08]

Demoed by research prototypes and product systems

DBLife WEBTABLES

TEXTRUNNER.

Focus of This Tutorial

- Brief Overview of:
 - Resource discovery
 - Interface understanding
 - i.e., where to, and how to issue a search query to a deep web repository?
- Dur focus: Data crawling, sampling, and analytics

Which individual search and/or browsing requests should a third-party explorer issue to the web interface of a given deep web repository, in order to enable efficient crawling, sampling, and data analytics?

Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Some Crawling**
- Sampling
- Data Analytics
- **50** Final Remarks

Resource Discovery

- Objective: discover resources of "interest"
 - Task 1: is an URL of interest?
 - Criteria A: is a deep web repository
 - Criteria B: belongs to a given topic
 - Task 2: Find all interesting URLs
- Task 1, Criteria A
 - Transactional page search [LKV+06]
 - Pattern identification e.g., "Enter keywords", form identification
 - Synonym expansion e.g., "Search" + "Go" + "Find it"

- Learn by example
- Task 2
 - Topic distillation based on a search engine
 - e.g., "used car search", "car * search"
 - Alone not suffice for resource discovery [Cha99]
 - Focused/Topical "Crawling"
 - Priority queue ordered by importance score
 - Leveraging locality
 - Often irrelevant pages could lead to relevant ones
 - Reinforcement learning, etc.

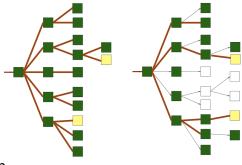


Figure from [DCL+00]

[DCL+00] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles, and M. Gori, "Focused crawling using context graphs", VLDB, 2000.

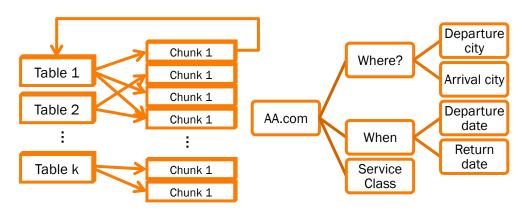
[LKV+06] Y. Li, R. Krishnamurthy, S. Vaithyanathan, and H. V. Jagadish, "Getting Work Done on the Web: Supporting Transactional Queries", SIGIR, 2006.

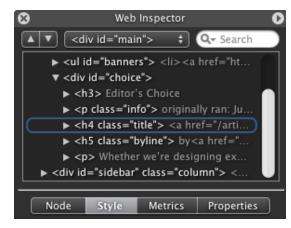
[Cha99] S. Chakrabarti, "Recent results in automatic Web resource discovery", ACM Computing Surveys, vol. 31, 1999.

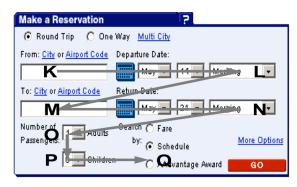
Interface Understanding

Modeling Web Interface

- Generally easy for keyword search interface, but can be extremely challenging for others (e.g., form-like search, graph-browsing)
- What to understand?
 - Structure of a web interface
- Modeling language
 - Flat model e.g., [KBG+01]
 - Hierarchical model e.g., [ZHC04, DKY+09]
- Input information
 - o HTML Tags e.g., [KBG+01]
 - Visual layout of an interface e.g., [DKY+09]







[KBG+01] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, "Efficient Web Form Entry on PDAs", WWW 2001. [ZHC04] Z. Zhang, B. He, and K. C.-C. Chang, "Understanding Web Query Interfaces: Best-Effort Parsing with Hidden Syntax", SIGMOD 2004 [DKY+09] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser, "A Hierarchical Approach to Model Web Query Interfaces for Web Source Integration", VLDB. 2009.

Interface Understanding

Schema Matching

What to understand?

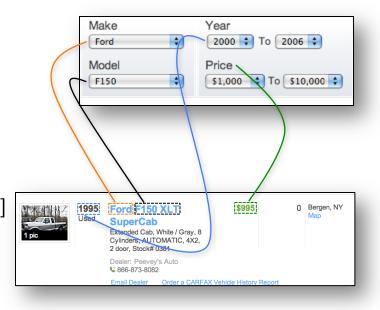
Attributes corresponding to input/output controls on an interface

Modeling language

 Map schema of an interface to a mediated schema (with well understood attribute semantics)

Key Input Information

- Data/attribute correlation [SDH08, CHW+08]
- Human feedback [CVD+09]
- Auxiliary sources [CMH08]



[CHW+08] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, "WebTables: exploring the power of tables on the web", VLDB, 2008.

[SDH08] A. D. Sarma, X. Dong, and A. Halevy, "Bootstrapping Pay-As-You-Go Data Integration Systems", SIGMOD, 2008. [CVD+09] X. Chai, B.-Q. Vuong, A. Doan, and J. F. Naughton, "Efficiently Incorporating User Feedback into Information Extraction and Integration Programs", SIGMOD, 2009.

[CMH08] M. J. Cafarella, J. Madhavan, and A. Halevy, "Web-Scale Extraction of Structured Data", SIGMOD Record, vol. 37, 2008.

Related Tutorials

- [FHM08] M. Franklin, A. Halevy, and D. Maier, "A First Tutorial on Dataspaces", VLDB, 2008.
- [GM08] L. Getoor and R. Miller, "Data and Metadata Alignment: Concepts and Techniques", ICDE, 2008.
- [DN09] X. Dong and F. Nauman, "Data fusion Resolving Data Conflicts for Integration", VLDB, 2009.
- [CLR+10] L. Chiticariu, Y. Li, S. Raghavan, and F. Reiss, "Enterprise Information Extraction: Recent Developments and Open Challenges", SIGMOD, 2010.
- [WT10] G. Weikum and M. Theobald, "From Information to Knowledge: Harvesting Entities and Relationships from Web Sources", PODS, 2010.

Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Solution** Crawling
- Sampling
- Data Analytics
- **50** Final Remarks

Exploration of a Deep Web Repository

Once the interface is properly understood...

Assume that we are now given

- A URL for a deep web repository
- A wrapper for querying the repository (still limited by what queries are accepted by the repository – see next few slides)

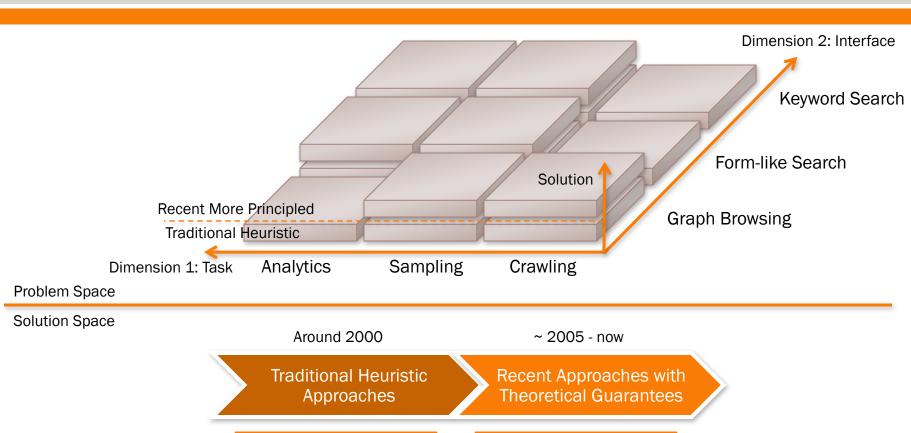
What's next?

- We still need to address the data exploration challenge
- Key question: which queries or browsing requests should we issue in order to efficiently achieve the intended purpose of crawling, sampling or data analytics?

Main source of challenge

- restrictions on query interfaces
- Orthogonal to the interface understanding challenge, and remains even after an interface is fully understood.
- e.g., how to estimate COUNT(*) through an SPJ interface

Problem Space and Solution Space



- e.g., seed-query based bootstrapping for crawling
- e.g., query sampling for repository sampling
- No guarantee on query cost, accuracy, etc.

- e.g., performancebounded crawlers
- e.g., unbiased samplers and aggregate estimators
- Techniques built upon sampling theory, etc.

Zhang and Das, Tutorial @ VLDB 2011

Dimension 1. Task

Crawling

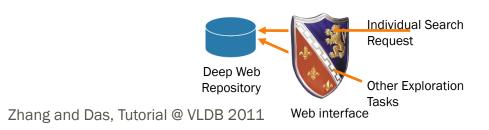
- Objective: download as many elements of interest (e.g., documents, tuples, metadata such as domain values) from the repository as possible.
- Applications: building web archives, private directors, etc.

Sampling

- Draw sample elements from a repository according to a pre-determined distribution (e.g., uniform distribution for simple random sampling)
- Why? Because crawling is often impractical for very large repositories because of practical limitations on the number of web accesses.
- Collected sample can be later used for analytical processing, mining, etc.
- Applications: Search-engine quality evaluation for meta-search-engines, price distribution, etc.

Data Analytics

- Directly support online analytics over the repository
- Key Task: efficiently answer aggregate queries (COUNT, SUM, MIN, MAX, etc.)
- Overlap with sampling, but a key difference on the tradeoff of versatility vs. efficiency.
- Applications: consumer behavior analysis, etc.



Dimension 2. Interface

Keyword-based search

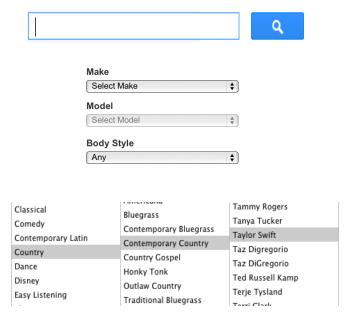
- Users specify one or a few keywords
- Common for both structured and unstructured data
- o e.g., Google, Bing, Amazon.

Form-like search ■

- Users specify desired values for one or a few attributes
- Common for structured data
- e.g., Yahoo! Autos, AA.com, NSF Award Search.
- A similar interface: hierarchical browsing

n Graph Browsing

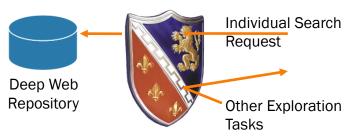
- A user can observe certain edges and follow through them to access other users' profiles.
- Common for online social networks
- e.g., Twitter, Facebook, etc.
- A Combination of Multiple Interfaces
 - e.g., Amazon (all three), eBay (all three).



Data Exploration Challenge

Restrictive Input Interface

- Restrictions on what queries can be issued
 - Keyword Search Interface: nothing but a set of keywords
 - Form-like Interface: only conjunctive search queries
 - e.g., List all Honda Accord cars with Price below \$10,000
 - Graph Browsing Interface
 - only select one of the neighboring nodes
- We do not have complete access to the repository. No complete SQL support
 - e.g., we cannot issue "big picture" queries: e.g., SUM, MIN, MAX aggregate queries
 - e.g., we cannot issue "meta-data" queries: e.g., keyword such as DISTINCT (handy for domain discovery)



Data Exploration Challenge

Restrictive Output Interface

- Restrictions on how many tuples will be returned
 - Top-k restriction leads to three types of queries:
 - overflowing (> k): top-k elements (documents, tuples) will be selected according to a (sometimes secret) scoring function and returned
 - valid (1..k element)
 - underflowing (0 element)
 - COUNT vs. ALERT
 - An alert of overflowing can always be obtained through a web interface

A maximum of 3000 awards are displayed. If you did not find the information you are looking for, please refine your search.

- Page turn
 - Limited number of page turns allowed (e.g., 10-100 for Google)
 - Essentially the same as top-k restriction

Your search returned 41427 results. The allowed maximum number of results is 1000. Please narrow down your search criteria and try your search again.

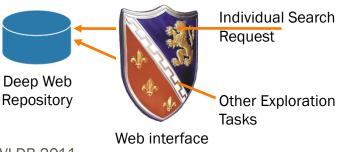
- Unlimited page turns
 - But a page turn also consumes a web access

1-15 of 15167 used Ford F150 cars

Data Exploration Challenge

Implications of Interface Restrictions

- Two ways to address the input/output restrictions
 - Direct negotiation with the owner of the deep web repository
 - Crawling, sampling and analytics can all be supported (if necessary)
 - Used by many real-world systems e.g., Kayak
 - Bypass the interface restrictions
 - By issuing a carefully designed sequence of queries
 - e.g., for crawling: these queries should recall as many tuples as possible
 - or even "prove" that all tuples/documents returnable by the output interface are crawled.
 - e.g., for analytics: one should be able to infer from these queries an accurate estimation of an aggregate that cannot be directly issued because of the input interface restriction.



Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- Crawling
- Sampling
- Data Analytics
- **50** Final Remarks

Overview of Crawling

Motivation for crawling

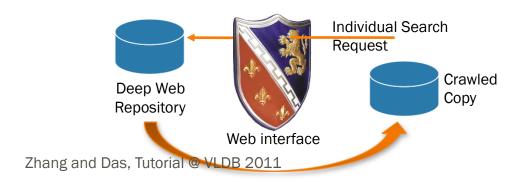
- Enable third-party web services e.g., mash-up
- A pre-processing step for answering queries not supported by the web interface
 - e.g., count the percentage of used cars which have GPS navigation; find all documents which contain the term "DBMS" and were last updated after Aug 1, 2011.
 - Note: these queries cannot be directly answered because of the interface restrictions.
- Note the key differences with web crawling

Taxonomy of crawling techniques

- Interfaces: (a) (keyword and form-like) search interface, (b) browsing interface
- Technical challenges: (1) find a finite set of queries that recall most if not all tuples (a challenge only for search interfaces), (2) find a small subset while maintaining a high recall, (3) issue the small subset in an efficient manner (i.e., system issues).

Our discussion order

o (a1), (a2), (b2), (*3)

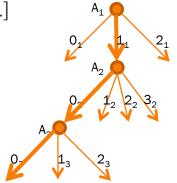


Crawling Over Search Interfaces

(a1) Find A Finite Set of Search Queries with High Recall

- Keyword search interface
 - Use a pre-determined query pool: e.g., all English words/phrases
 - Bootstrapping technique: iterative probing [CMH08]
- Form-like search interface
 - If all attributes are represented by drop-down boxes or check buttons
 - Solution is trivial
 - If certain attributes are represented by text boxes
 - Prerequisite: attribute domain discovery
 Enter ZIP Code
 - Nearly impossible to guarantee complete discovery [JZD11]
 - Reason: top-k restriction on output interface
 - k: $\Omega(|V|^m)$; query cost: $\Omega(m^2|V|^3)$
 - Probabilistic guarantee achievable
 - Note: domain discovery also has other applications e.g., as a preprocessor for sampling, or standalone interest.

Query: SELECT * FROM D Answer: $\{0_1, 0_2, ..., 0_m\}$



[CMH08] M. J. Cafarella, J. Madhavan, and A. Halevy, "Web-Scale Extraction of Structured Data", SIGMOD Record, vol. 37, 2008.

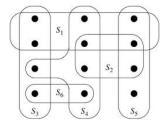
[JZD11] X. Jin, N. Zhang, G. Das, "Attribute Domain Discovery for Hidden Web Databases", SIGMOD 2011.

Zhang and Das, Tutorial @ VLDB 2011

Crawling Over Search Interfaces

(a2) How to Efficiently Crawl

- Motivation: Cartesian product of attribute domains often orders of magnitude larger than the repository size
 - o e.g., cars.com: 5 inputs, 200 million combinations vs. 650,000 tuples
- How to use the minimum number of queries to achieve a significant coverage of underlying documents/tuples
 - Essentially a set cover problem (but inputs are not properly known before hand)
- Search query selection
 - Keyword search: a heuristic of maximizing #new_elements/cost [NZC05]
 - #new_elements: not crawled by previously issued queries
 - Cost may include keyword query cost + cost for downloading details of an element
 - Form-like search: find "binding" inputs [MKK+08]
 - Informative query template: grow with increasing dimensionality
 - Good news: #informative templates grows proportionally with the database size, not #input combinations.



Make:Toyota Type:Hybrid

Make:Jeep Type:Hybrid

[NZCO5] A. Ntoulas, P. Zerfos, and J. Cho, "Downloading Textual Hidden Web Content through Keyword Queries", JCDL, 2005.

[MKK+08] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy, "Google's Deep-Web Crawl", VLDB 2008.

Zhang and Das, Tutorial @ VLDB 2011

Crawling Over Browsing Interfaces

(b2) How to Efficiently Crawl

Technical problem

- Hierarchical browsing: Traverse vertices of a tree
- Graph browsing: Traverse vertices of a graph
 - Starting with a seed set of users (resp. URLs).
 - Recursively follows relationships (resp. hyperlinks) to others.
- Exhaustive crawling vs. Focused crawling

Findings

- Are real-world social networks indeed connected?
 - It depends Flickr ~27%, LiveJournal ~95% [MMG+07]
- How to select "seed(s)" for crawling?
 - Selection does not matter much as long as the number of seeds is sufficiently large (e.g., > 100) [YLW10]

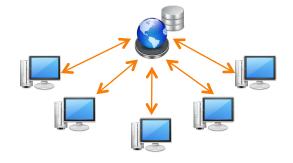
[MMG+07] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, "Measurement and Analysis of Online Social Networks", IMC, 2007.

[YLW10] S. Ye, J. Lang, F. Wu, "Crawling Online Social Graphs", APWeb, 2010.

System Issues Related to Crawling

(*3) how to issue queries efficiently

- Using a cluster of machines for parallel crawling
 - Imperative for large-scale crawling
 - Extensively studied for web crawling
 - But are the challenges still the same for crawling deep web repositories?
- Independent vs. Coordination
 - Overlap vs. (internal) communication overhead
 - How much coordination? Static vs. dynamic
- Politeness, or server restriction detection
 - e.g., some repositories block an IP address if queries are issued too frequently – but how to identify the maximum unblocked speed?



Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Some Crawling**
- Sampling
- Data Analytics
- **50** Final Remarks

Overview of Sampling

- Objective: Draw representative elements from a repository
 - Quality measure: sample skew
 - Efficiency measure: number of web accesses required

Motivating Applications

- Unstructured data: use sample to estimate repository sizes [SZS+06], generate content summaries [IG02], estimate average document length [BB98, BG08], etc.
 - An interesting question: Google vs. Bing, whose repository is more comprehensive?
- Structured data: rich literature of using sampling for approximate query processing (see tutorials [Das03, GG01])
 - An interesting question: What is the average price of all 2008 Toyota Prius @ Yahoo! Autos?
- Note (again): a sample can be later used for analytical purposes e.g., data mining.

Central Theme

- Skew reduction: make the sampling distribution as close to a target distribution as possible
 - Target distribution is often the uniform distribution in this case, the objective is to make the probability of retrieving each document as uniform as possible.

Sampling Over Keyword-Search Interfaces

Pool-Based Sampler: Basic Idea

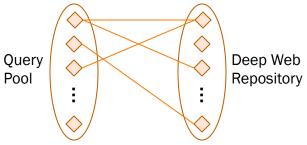
Query-pool based sampler

- Assumption: there is a given (large) pool of queries which, once being issued through the web interface, can recall the vast majority of elements in the deep web repository
- e.g., for unstructured data, a pool of English phrases

Two types of sampling process

- Heuristic: based on an observation that the query pool is too large to enumerate so we have to (somehow) choose a small subset of queries (randomly or in a heuristic fashion) [IG02, SZS+06, BB98]
 - Problem: no guarantee on the "quality" (i.e., skew) of retrieved sample elements e.g., if
 one randomly chooses a query and then randomly selects a document from the returned
 result [BB98], then longer documents will be favored over shorter ones.
- Skew reduction: identify the source of skew and use skew-correction techniques, e.g., rejection sampling, to remove the skew.

Interesting observation: relationship b/w keyword and sampling a bipartite graph



Zhang and Das, Tutorial @ VLDB 2011

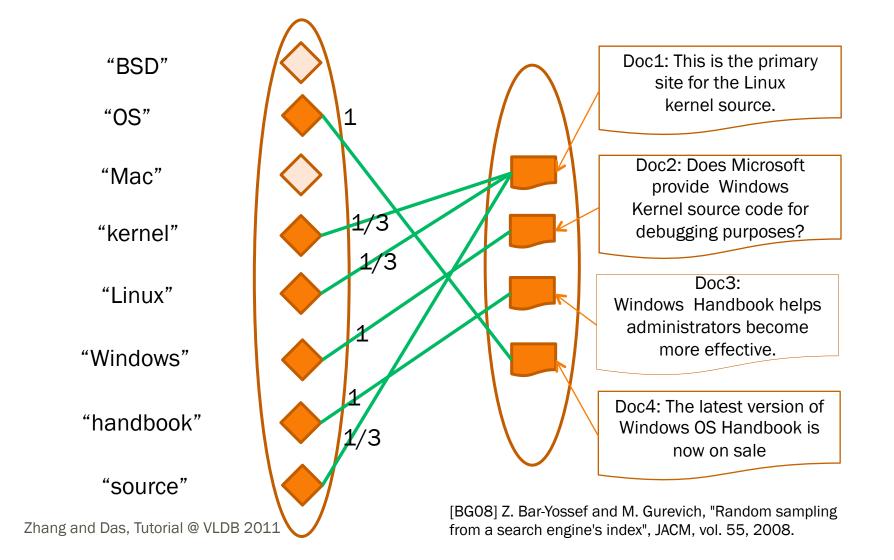
[IGO2] P. G. Iperirotis and L. Gravano, "Distributed Search over the Hidden Web: Hierarchical Database Sampling and Selection", VLDB, 2002.

[SZS+06] M. Shokouhi, J. Zobel, F. Scholer, and S. Tahaghoghi, "Capturing collection size for distributed non-cooperative retrieval", SIGIR, 2006.

[BB98] K. Bharat and A. Broder, "A technique for measuring the relative size and overlap of public Web search engines", WWW, 1998.

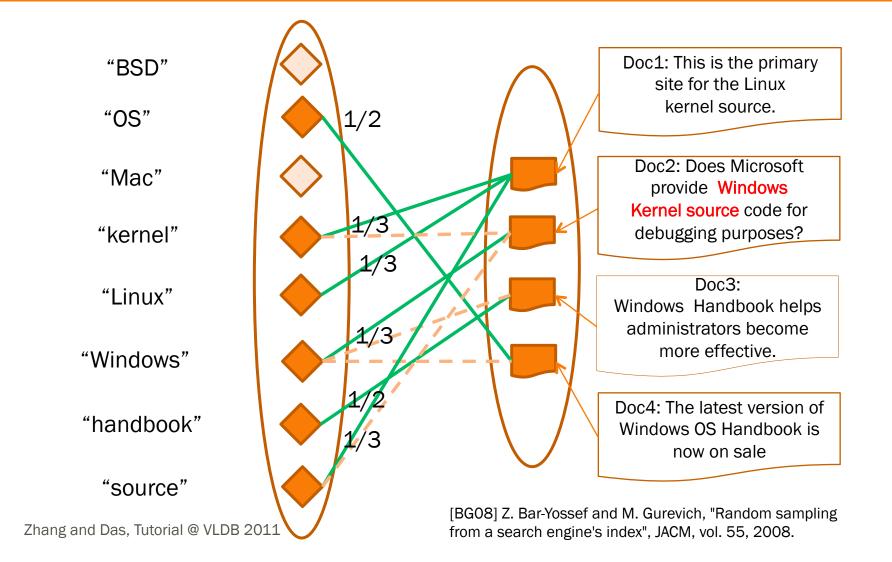
Sampling Over Keyword-Search Interfaces

Pool-Based Sampler: Reduce Skew



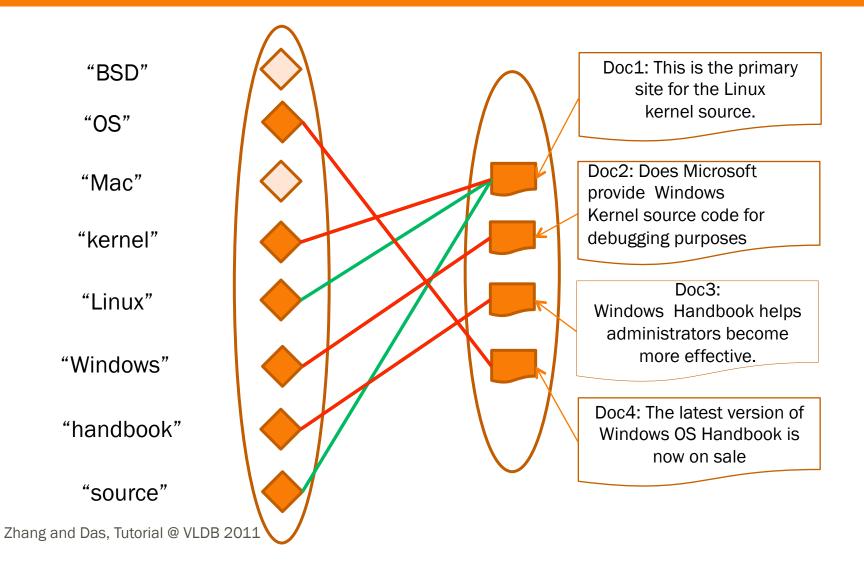
Sampling Over Keyword-Search Interfaces

Pool-Based Sampler: Reduce Skew



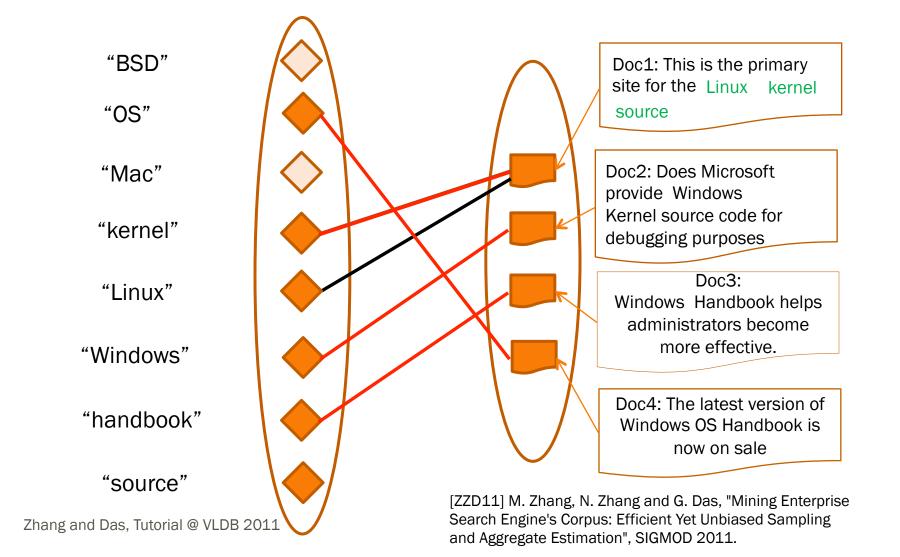
Sampling Over Keyword-Search Interfaces

Pool-Based Sampler: Remove Skew



Sampling Over Keyword-Search Interfaces

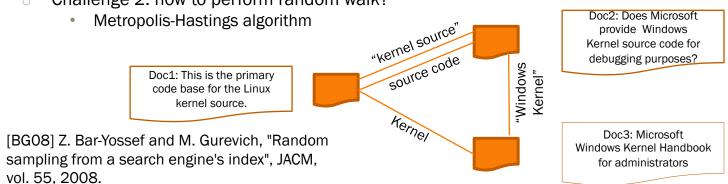
Pool-Based Sampler: Remove Skew



Sampling Over Keyword-Search Interfaces Other Sampling Methods

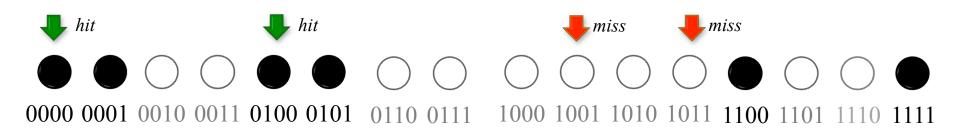
Pool-free random walk [BG08]

- A graph model
 - Each element in the repository is a vertex
 - Two elements are connected if they are returned by the same query
- Random walk over the graph, two enabling factors:
 - Given an element, we can sample uniformly at random a query which returns the document. (YEA for almost all keyword search interfaces).
 - Given an element, we can find the number of queries which return the document (may incur significant query cost)
- o Challenge 1: is the graph connected?
 - Note: the set of all possible queries which might return a document can be extremely large
 - 2ⁿ gueries for a document with n words
 - Thus, we have to limit our attention to a subset of gueries
 - e.g., only consecutive phrases
 - Problem: too restricted disconnected graph, too relaxed high cost for sampling
- Challenge 2: how to perform random walk?



Sampling Over Form-Like Interfaces Source of Skew

- Recall: Restrictions for Form-Like Interfaces
 - Input: conjunctive search queries only
 - Output: return top-k tuples only (with or without the COUNT of matching tuples)
- Good News
 Second News
 Second
 - Defining "designated queries" no longer a challenge
 - e.g., consider all fully specified queries each tuple is returned by one and only one of them



Source of Skew

Bad News: A New Source of Skew

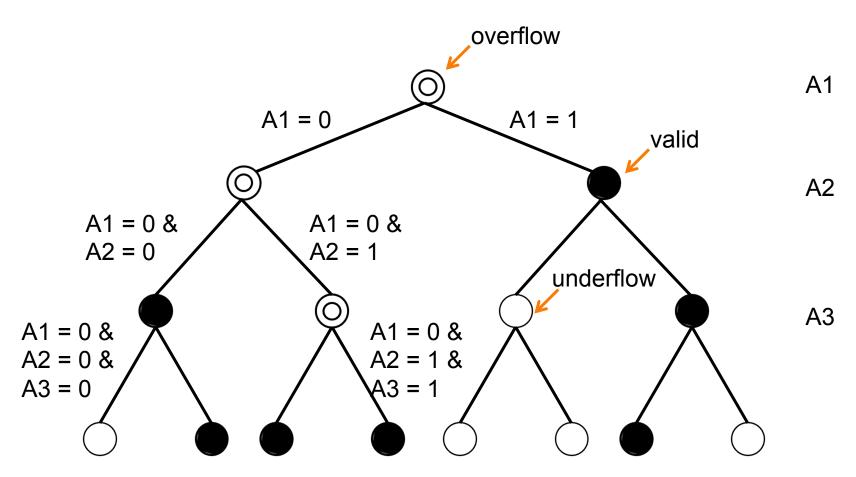
 We cannot really use fully specified queries because sampling would be really like search for a needle in a haystack

- So we must use shorter, broader queries
 - But such queries may be affected by the top-k output restriction
 - Skew may be introduced by the scoring function used to select top-k tuples
 - e.g., skew on average price when the top-k elements are the ones with the lowest prices

Basic idea for reducing/removing skew

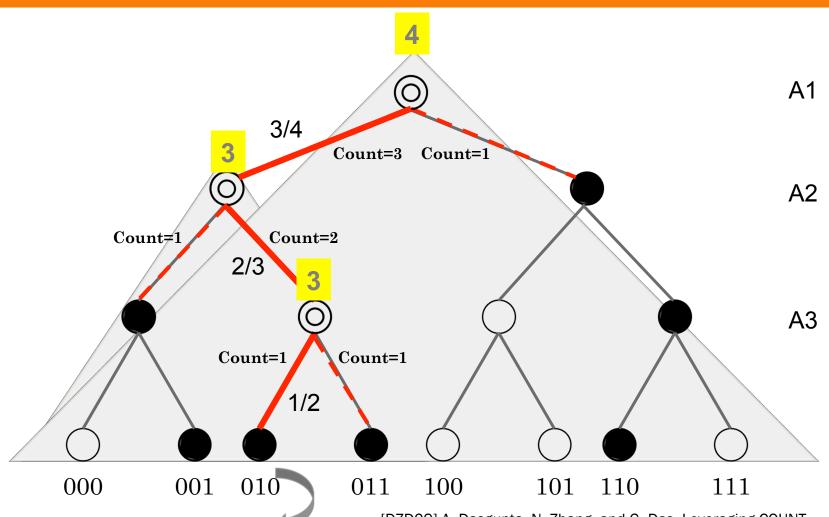
 Find non-empty queries which are not affected by the scoring function – i.e., queries which return 1 to k elements

COUNT-Based Skew Removal



[DZD09] A. Dasgupta, N. Zhang, and G. Das, Leveraging COUNT Information in Sampling Hidden Databases, ICDE 2009.

COUNT-Based Skew Removal

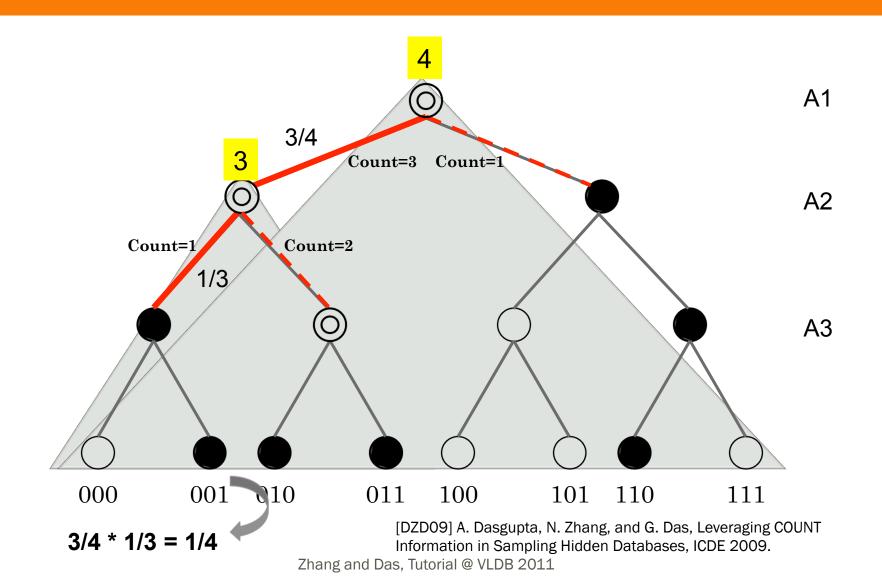


[DZD09] A. Dasgupta, N. Zhang, and G. Das, Leveraging COUNT Information in Sampling Hidden Databases, ICDE 2009.

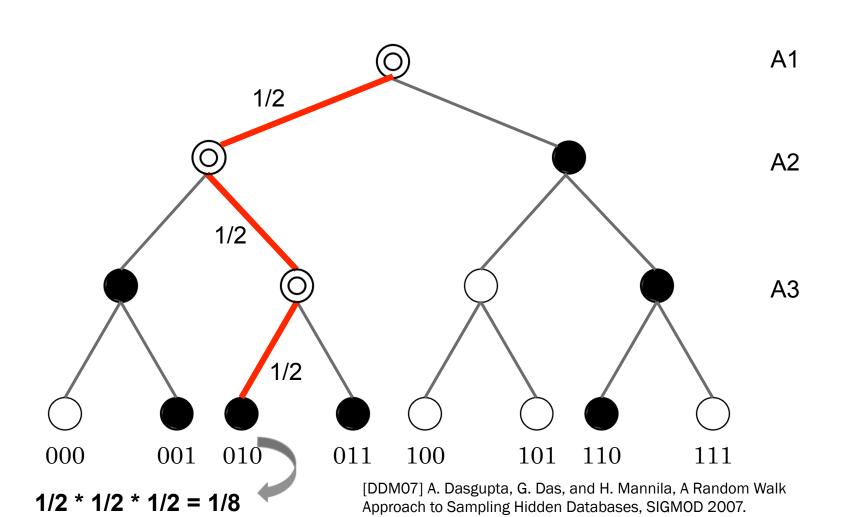
Zhang and Das, Tutorial @ VLDB 2011

3/4 * 2/3 * 1/2 = 1/4

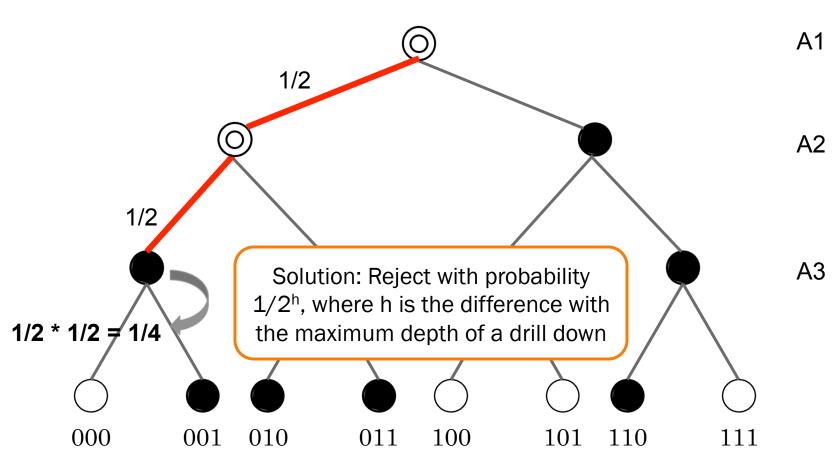
COUNT-Based Skew Removal



Skew Reduction for Interfaces Sans COUNT



Skew Reduction for Interfaces Sans COUNT



[DDM07] A. Dasgupta, G. Das, and H. Mannila, A Random Walk Approach to Sampling Hidden Databases, SIGMOD 2007. Zhang and Das, Tutorial @ VLDB 2011

Sampling Over Graph Browsing Interfaces Sampling by exploration

- Note: Sampling is a challenge even when the entire graph topology is given
 - Reason: Even the problem definition is tricky
 - What to sample? Vertices? Edges? Sub-graphs?
- Methods for sampling vertices, edges, or sub-graphs
 - Snowball sampling: a nonprobability sampling technique
 - Random walk with random restart
 - Forest Fire
 - 0 ...

- What are the possible goals of sampling? [LF06]
 - Criteria for a static snapshot
 - In-degree & out-degree distributions, distributions of weakly/strongly connected components (for directed graphs), distribution of singular values, clustering coefficient, etc.
 - Criteria for temporal graph evolution
 - #edges vs. #nodes over time, effective diameter of the graph over time, largest connected component size over time,

[LF06] J Leskovec and C Faloutsos, Sampling from Large Graph, KDD 2006.

Sampling Over Graph Browsing Interfaces

Unbiased Sampling

- Survey and Tutorials for random walks on graphs
 - [Lov93], [LF08], [Mag08]
- Simple random walk is inherently biased
 - Stationary distribution: each node v has probability of d(v)/(2|E|) of being selected, where d(v) is the degree of v and |E| is the total number of edges i.e., $p(v) \sim d(v)$
- Skew correction
 - Re-weighted random walk [VH08]
 - Rejection sampling
 - Or, if the objective is to use the samples to estimate an aggregate, then apply Hansen-Hurwitz estimator after a simple random walk.
 - Metropolis-Hastings random walk [MRR+53]
 - Transition probability from u to its neighbor v: min(1, d(u)/d(v))/d(u)
 - Stay at u with the remaining probability
 - Leading to a uniform stationary distribution

H C E

Next candidate

Current node

Example taken from the slides of M Gjoka, M Kurant, C Butts, A Markopoulou, "Walking in Facebook: Case Study of Unbiased Sampling of OSNs", INFOCOM 2010

[Mag08] M. Maggioni, Tutorial - Random Walks on Graphs Large-time Behavior and Applications to Analysis of Large Data Sets, MRA 2008.

[LF08] J. Leskovec and C. Faloutsos, "Tools for large graph mining: structure and diffusion", WWW (Tutorial), 2008. [Lov93] L. Lovasz, "Random walks on graphs: a survey", Combinatorics, Paul Erdos is Eighty, 1993.

[VH08] E. Volz and D. Heckathorn, "Probability based estimation theory for respondent-driven sampling," J. Official Stat., 2008.

[MRR+53] N. Metropolis, M. Rosenblut, A. Rosenbluth, A. Teller, and E. Teller, Equation of state calculation by fast computing machines, J. Chem. Phys., vol. 21, 1953.

Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Solution** Crawling
- Sampling
- Data Analytics

Overview of Data Analytics

- Objective: Directly estimate aggregates over a deep web repository
- Motivating Applications
 - Unstructured data: Google vs. Bing, whose repository is more comprehensive?
 - Structured data: Total price of all cars listed at Yahoo! Autos?
- Sampling vs. Data Analytics
 - Data analytics requires the target aggregate to be known a priori. Samples can support multiple data analytics tasks
 - while samples may also be used to estimate (some, not all) aggregates, direct estimation is often more efficient because the estimation process can be tailored to the aggregate being estimated.

Performance Measures

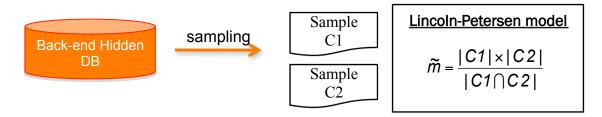
- Quality measure: MSE = Bias² + Var:
 - Reduction of both bias and variance.
- Efficiency measure: number of web accesses required

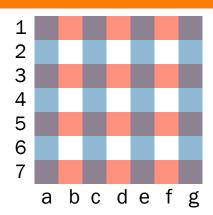
Analytics Over Keyword Search Interfaces

Leveraging Samples: Mark-and-Recapture

- Used for estimating population size in ecology.
- Recently used (in various forms) for estimating the corpus size of a search engine

- Absolute size: [BFJ+06] [ZSZ+06] [LYM02]
- Relative size (among search engines): [BB98] [BG08]





$$\tilde{m} = \frac{|C1| \times |C2|}{|C1| \cap |C2|} = \frac{28 \times 28}{16} = 49$$

Note: only requires C1 and C2 to be uncorrelated - i.e., the fraction of documents in the corpus that appears in C1 should be the same as the fraction of documents in C2 that appear in C1

[BB98] K. Bharat and A. Broder, "A technique for measuring the relative size and overlap of public Web search engines", WWW, 1998.

[BG08] Z. Bar-Yossef and M. Gurevich, "Random sampling from a search engine's index", JACM, vol. 55, 2008.

[BFJ+06] A. Broder, M. Fontura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Panigrahy, A. Tomkis, and Y. Xu, "Estimating corpus size via queries", CIKM, 2006.

[SZS+06] M. Shokouhi, J. Zobel, F. Scholer, and S. Tahaghoghi. Capturing collection size for distributed non-cooperative retrieval. In SIGIR. 2006.

[LYM02] Y. C. Liu, K. Yu and W. Meng. Discovering the representative of a search engine. In CIKM, 2002.

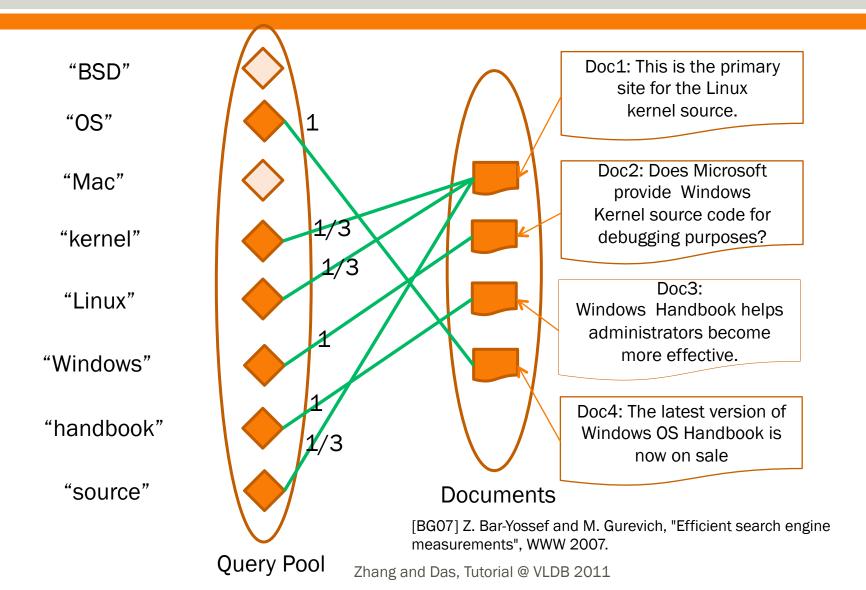
Problems with Mark-and-Recapture

Problems

- Correlation determination can be a tricky issue [BFJ+06]
 - e.g., C1: documents matching any five-digit number, C2: documents matching any medium frequency word – correlated
 - But C1: documents matching exactly one five-digit number, C2 ... exactly one medium frequency word – little correlation
- Estimation bias
 - When using simple random samples, mark-and-recapture tends to be positively skewed [AMM05]
- \circ (In-) Efficiency: at least an expected number of m^{1/2} samples required for a population of size m

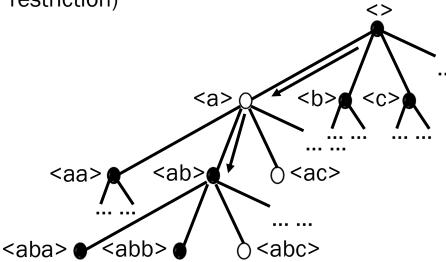
[AMM05] S. C. Amstrup, B. F. J. Manly, and T. L. McDonald. *Handbook of capture-recapture analysis*. Princeton University Press, 2005.

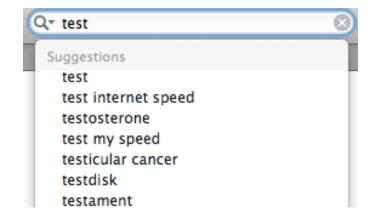
Analytics Over Keyword Search Interfaces An Unbiased Estimator for COUNT and SUM



Suggestion Sampling

Objective: perform analytics over a search engine's user query log, based on the autocompletion feature provide by the search engine (essentially an interface with prefixquery input restriction and top-k output restriction)





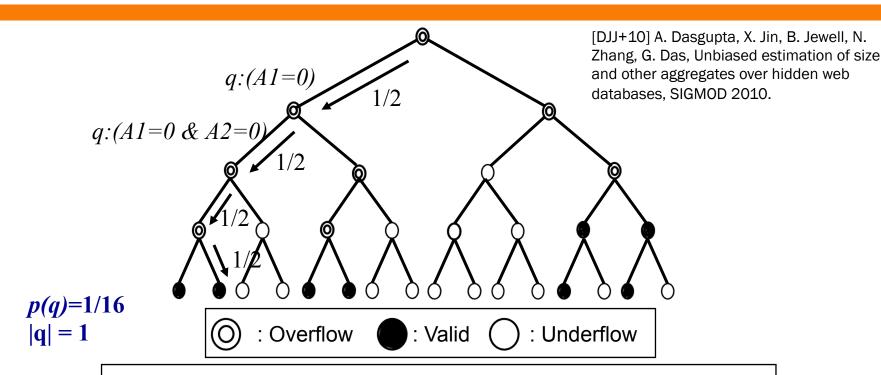
When random walk stops at node x

Estimation for # of search strings: $\frac{1}{p(x)}$

$$E\left[\frac{1}{p(x)}\right] = \sum_{x \text{ is marked}} p(x) \cdot \frac{1}{p(x)} = \# \text{ of marked nodes}$$

Z. Bar-Yossef and M. Gurevich. Mining search engine query logs via suggestion sampling. In *VLDB*, 2008.

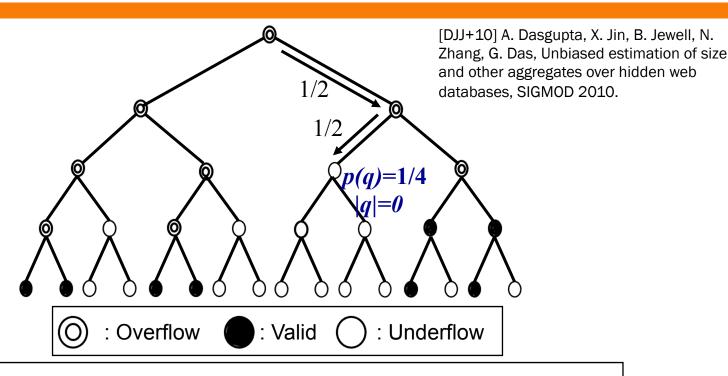
An Unbiased Estimator for COUNT and SUM



Basic Ideas

- ✓ Continue drill down till valid or underflow is reached
- ✓ Size estimation as |q| (Hansen-Hurwitz Estimator)
- ✓ **Unbiasedness** of estimator $E\left[\frac{|q|}{p(q)}\right] = \sum_{q \in \Omega_{TV}} p(q) \cdot \frac{|q|}{p(q)} = m$

An Unbiased Estimator for COUNT and SUM



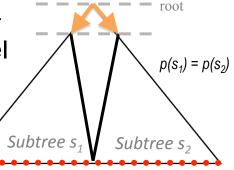
Basic Ideas

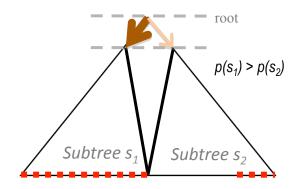
- ✓ Continue drill down till valid or underflow is reached
- ✓ Size estimation as |q| (Hansen-Hurwitz Estimator)
- ✓ **Unbiasedness** of estimator $E\left[\frac{|q|}{p(q)}\right] = \sum_{q \in \Omega_{TV}} p(q) \cdot \frac{|q|}{p(q)} = m$

Variance Reduction

Weight Adjustment

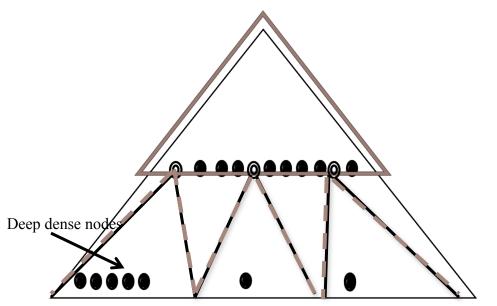
 Addresses low-level low-cardinality nodes





Divide-and-Conquer

 Addresses deeplevel dense nodes



[DJJ+10] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, G. Das, Unbiased estimation of size and other aggregates over hidden web databases, SIGMOD 2010.

Variance Reduction

- Stratified Sampling [LWA10]
- Adaptive sampling
 - e.g., adaptive neighborhood sampling: start with a simple random sample, then expand it with adding tuples from the neighborhood of sample tuples [WA11]
- Analytics Support for Data Mining Tasks
 - Frequent itemset mining [LWA10, LA11], differential rule mining [LWA10]

[LWA10] Tantan Liu, Fan Wang, Gagan Agrawal: Stratified Sampling for Data Mining on the Deep Web. ICDM 2010

[WA11] Fan Wang, Gagan Agrawal: Effective and efficient sampling methods for deep web aggregation queries. EDBT 2011

[LA11] Tantan Liu, Gagan Agrawal: Active learning based frequent itemset mining over the deep web. ICDE 2011

Analytics Over Graph Browsing Interfaces Uniqueness of Graph Analytics

- Observation: uniqueness of analytics over graph browsing
 - Aggregates over a graph browsing interface may be defined on not only the underlying tuples (i.e., each user's information), but also the graph topology itself (i.e., relationship between users)
 - Examples: Graph cut, size of max clique, other topological measures
- Implication of the uniqueness
 - It is no longer straightforward how a sample of nodes can be used to answer aggregates
 - Efficiency and accuracy of analytics now greatly depend on what topological information the interface reveals, e.g.,
 - Level 1: a guery is needed to determine whether user A befriends B.
 - Level 2: a query reveals the list of user A's friends.
 - Level 3: a query reveals the list of user A's friends, as well as the degree of each friend.

Analytics Over Graph Browsing Interfaces

Relationship with Graph Testing

Graph Testing [GGR98, TSL10]

- Input: a list of vertices
- Interface: a query is needed to determine if there is an edge between two vertices
- Objective: Approximately answer certain graph aggregates (e.g., k-colorability, size of max clique) while minimizing the number of queries issued.

Differences with Graph Testing

- The list of vertices is not pre-known
- More diverse interface models
- More diverse aggregates
 - e.g., on user attributes
 - e.g., defined over a local neighborhood

Example: k-colorability [GGR98].

A simple algorithm of sampling $O(k^2log(k/\delta)/\epsilon^3)$ vertices and testing each pair of them can construct a k-coloring of all n vertices such as at most ϵn^2 edges violate coloring rule.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron, "Property testing and its connection to learning and approximation", JACM, vol. 45, 1998.

[TSL10] Y. Tao, C. Sheng, and J. Li, "Finding Maximum Degrees in Hidden Bipartite Graphs", SIGMOD 2010.

Outline

- Introduction
- Resource Discovery and Interface Understanding
- Technical Challenges for Data Exploration
- **Some Crawling**
- Sampling
- Data Analytics
- Final Remarks

Conclusions

Challenges

- Resource discovery
- Interface understanding
- Data exploration

Data Exploration Challenge

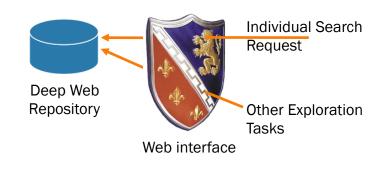
- Tasks: Crawling, Sampling, Analytics
- Interfaces: Keyword search, form-like search, graph browsing

Traditional Heuristic Approaches

Recent Approaches with Theoretical Guarantees

- e.g., seed-query based bootstrapping for crawling
- e.g., query sampling for repository sampling
- No guarantee on query cost, accuracy, etc.

- e.g., performancebounded crawlers
- e.g., unbiased samplers and aggregate estimators
- Techniques built upon sampling theory, etc.



Open Challenges

Application/Vision

What other third-party applications?

Technical Challenge

- Dynamic data when aggregates change rapidly
 - e.g., Twitter, financial data, etc.
- Hybrid of interfaces
- Many others...

Privacy Challenge

- From an owner's perspective: should aggregates be disclosed?
- This challenge forms a sharp contrast with most existing work on data privacy (which focuses on protecting individual tuples while properly disclosing aggregate information for analytical purposes)
 - Here we must disclose individual tuples while suppressing access to aggregates
 - Recent work: dummy tuple insertion [DZDC09], correlation detection [WAA10], randomized generalization [JMZD11]

[DZD09] A. Dasgupta, N. Zhang, G. Das, and S. Chaudhuri, Privacy Preservation of Aggregates in Hidden Databases: Why and How? SIGMOD 2009.

[WAA10] S. Wang, D. Agrawal, and A. E. Abbadi, "HengHa: Data Harvesting Detection on Hidden Databases", CCSW 2010. [JMZD11] X. Jin, A. Mone, N. Zhang, and G. Das, Randomized Generalization for Aggregate Suppression Over Hidden Web Databases, PVLDB 2011.

- [AHK+07] Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, "Analysis of Topological Characteristics of Huge Online Social Networking Services", WWW, 2007.
- [BB98] K. Bharat and A. Broder, "A technique for measuring the relative size and overlap of public Web search engines", WWW, 1998.
- [BFJ+06] A. Broder, M. Fontura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Panigrahy, A. Tomkis, and Y. Xu, "Estimating corpus size via queries", CIKM 2006.
- [BG07] Z. Bar-Yossef and M. Gurevich, "Efficient search engine measurements", WWW, 2007.
- [BG08] Z. Bar-Yossef and M. Gurevich, "Random sampling from a search engine's index", JACM, vol. 55, 2008.
- [BGG+03] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, "Estimating Aggregates on a Peer-to-Peer Network," Stanford University Tech Report, 2003.
- [CD09] S. Chaudhuri and G. Das, "Keyword querying and Ranking in Databases", VLDB, 2009.
- [CHW+08] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, "WebTables: exploring the power of tables on the web", VLDB, 2008.
- [CLR+10] L. Chiticariu, Y. Li, S. Raghavan, and F. Reiss, "Enterprise Information Extraction: Recent Develop-ments and Open Challenges", SIGMOD, 2010.
- [CM10] A. Cali and D. Martinenghi, "Querying the Deep Web (Tutorial)", EDBT, 2010.
- [CMH08] M. J. Cafarella, J. Madhavan, and A. Halevy, "Web-Scale Extraction of Structured Data", SIGMOD Record, vol. 37, 2008.
- [CPW+07] D. H. Chau, S. Pandit, S. Wang, and C. Faloutsos, "Parallel Crawling for Online Social Networks", WWW, 2007.
- [CVD+09] X. Chai, B.-Q. Vuong, A. Doan, and J. F. Naughton, "Efficiently Incorporating User Feedback into Information Extraction and Integration Programs", SIGMOD, 2009.

- [CWL+09] Y. Chen, W. Wang, Z. Liu, and X. Lin, "Keyword Search on Structured and Semi-Structured Data (Tutorial)", SIGMOD, 2009.
- [Das03] G. Das, "Survey of Approximate Query Processing Techniques (Tutorial)", SSDBM, 2003.
- [DCL+00] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles, and M. Gori, "Focused crawling using context graphs", VLDB, 2000.
- [DDM07] A. Dasgupta, G. Das, and H. Mannila, "A random walk approach to sampling hidden databases", SIGMOD, 2007.
- [DJJ+10] A. Dasgupta, X. Jin, B. Jewell, and G. Das, "Unbiased estimation of size and other aggregates over hidden web databases", SIGMOD, 2010.
- [DKP+08] G. Das, N. Koudas, M. Papagelis, and S. Puttaswamy, "Efficient Sampling of Information in Social Networks", CIKM/SSM, 2008.
- [DKY+09] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser, "A Hierarchical Approach to Model Web Query Interfaces for Web Source Integration", VLDB, 2009.
- [DN09] X. Dong and F. Nauman, "Data fusion Resolving Data Conflicts for Integration", VLDB, 2009.
- [DZD09] A. Dasgupta, N. Zhang, and G. Das, "Leveraging COUNT Information in Sampling Hidden Databases", ICDE, 2009.
- [DZD10] A. Dasgupta, N. Zhang, and G. Das, "Turbo-charging hidden database samplers with overflowing queries and skew reduction", EDBT, 2010.
- [DZD+09] A. Dasgupta, N. Zhang, G. Das, and S. Chaudhuri, "Privacy Preservation of Aggregates in Hidden Databases: Why and How?", SIGMOD, 2009.
- [FHM08] M. Franklin, A. Halevy, and D. Maier, "A First Tutorial on Dataspaces", VLDB, 2008.
- [GG01] M. Garofalakis, P. Gibbons: Approximate Query Processing: Taming the TeraBytes. VLDB 2001.

- [GGR98] O. Goldreich, S. Goldwasser, and D. Ron, "Property testing and its connection to learning and approximation", JACM, vol. 45, 1998.
- [GKBM10] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou, "Walking in Facebook: A Case Study of Unbiased Sampling of OSNs", INFOCOM, 2010.
- [GM08] L. Getoor and R. Miller, "Data and Metadata Alignment: Concepts and Techniques)", ICDE, 2008.
- [GMS06] C. Gkantsidis, M. Mihail, and A. Saberi, "Random walks in peer-to-peer networks: algorithms and evaluation", Performance Evaluation P2P computing systems, vol. 63, 2006.
- [IG02] P. G. Iperirotis and L. Gravano, "Distributed Search over the Hidden Web: Hierarchical Database Sampling and Selection", VLDB, 2002.
- [JZD11] X. Jin, N. Zhang, G. Das, "Attribute Domain Dis-covery for Hidden Web Databases", SIGMOD 2011.
- [KBG+01] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, "Efficient Web Form Entry on PDAs", WWW, 2001.
- [LWA10] T. Liu, F. Wang, and G. Agrawal, "Stratified Sampling for Data Mining on the Deep Web", ICDM, 2010.
- [LYM02] K.-L. Liu, C. Yu, and W. Meng, "Discovering the representative of a search engine", CIKM, 2002.
- [MAA+09] J. Madhavan, L. Afanasiev, L. Antova, and A. Halevy, "Harnessing the Deep Web: Present and Future", CIDR, 2009.
- [MMG+07] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, "Measurement and Analysis of Online Social Networks", IMC, 2007.
- [NZCO5] A. Ntoulas, P. Zerfos, and J. Cho, "Downloading Textual Hidden Web Content through Keyword Queries", JCDL, 2005.
- [RG01] S. Raghavan and H. Garcia-Molina, "Crawling the Hidden Web", VLDB, 2001.
- [RT10] B. Ribeiro and D. Towsley, "Estimating and sampling graphs with multidimensional random walks", IMC, 2010.
- [SDH08] A. D. Sarma, X. Dong, and A. Halevy, "Bootstrapping Pay-As-You-Go Data Integration Systems", SIGMOD, 2008.

- [SZS+06] M. Shokouhi, J. Zobel, F. Scholer, and S. Tahaghoghi, "Capturing collection size for distributed non-cooperative retrieval", SIGIR, 2006.
- [TSL10] Y. Tao, C. Sheng, and J. Li, "Finding Maximum Degrees in Hidden Bipartite Graphs", SIGMOD 2010.
- [WA11] F. Wang, G. Agrawal, "Effective and Efficient Sampling Methods for Deep Web Aggregation Queries", EDBT 2011.
- [WAA10] S. Wang, D. Agrawal, and A. E. Abbadi, "HengHa: Data Harvesting Detection on Hidden Databases", ACM Cloud Computing Security Workshop, 2010.
- [WT10] G. Weikum and M. Theobald, "From Information to Knowledge: Harvesting Entities and Relationships from Web Sources (Tutorial)", PODS, 2010.
- [YHZ+10] X. Yan, B. He, F. Zhu, J. Han, "Top-K Aggregation Queries Over Large Networks", ICDE, 2010
- [ZHC04] Z. Zhang, B. He, and K. C.-C. Chang, "Understanding Web Query Interfaces: Best-Effort Parsing with Hidden Syntax", SIGMOD, 2004.
- [ZZD11] M. Zhang, N. Zhang, and G. Das, Mining Enterprise Search Engine's Corpus: Efficient Yet Unbiased Sampling and Aggregate Estimation, SIGMOD 2011.

Thank you

Questions?

Contact: nzhang10@gwu.edu, gdas@uta.edu

