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Flash Devices (SSD)

10 don't matter

CPU is the critical
resource

Disk is disk

~650 mio units
shipped in 2010

Just a SATA drive

| can readily plug in flash

devices in my server.
What is the big deal?

4

7 Why Bother?

4

PCM is coming

100x faster
10 mio write cycles

[Papandreou et al., IMW 2011]
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Some Trends ...

2000 2010
HDD Capacity 200 GB x10 2TB
HDD GB/$ 0,05 x600 30
HDD IOPS 200 x1 200
SSD Capacity 14 GB (2001) x20 256 GB
SSD GB/$ 3 x10E-4 x1000 0,5
SSD IOPS 10E3 (SCSI) x1000 10E6+ (PCle)
Sx10E3+ (SATA)
PCM Capacity 2x10E5 cells, 4 bits/cell
PCM IOPS 10E6+ (1 chip)
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... and a Fact

Sequential scan:
30 from CPU-bound to Disk-bound

_ 25 . -0 —o—*
g 20 4 /
5’ 15
s —e—4 HDDs (striped disks)
g 10 ¢4 5SDs (striped disks) P
o -

5 e

—*
0 ——* I
0% 20% 40% 60% 80% 100%

Device utilization

[Tsorigiannis et al. 2010]

Flash-based SSDs do nothing well!
They offer high throughput at low energy consumption.
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SSD-based Systems |

With more than 1,000 stores, Danish Supermarket group

is one of Denmark’s largest retailers.

To help keep up with customer needs, the company manages
more than 10 terabytes of business intelligence data.

Database Appliances SSD-based blades

Scaled up

Super Micro 6026

Scaled down

Amdahl bl .
Neteeza Twin-fin Oracle Exadata dahl blade [szalay et al., 2009]

|Os matter. Systems are being designed and commercialized
for efficient data management for flash devices.
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Block Device

SSDs and HDDs provide the same memory abstraction: a block device interface

Associative memory

WRITE (name, value) | WRITE (address, value) Location-
| Associativity | addressed
READ (name) layer READ (address) memory

Y
Y

(physical layer)

ERASE (address)

Figure courtesy of Koschaak and Saltzer Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Strong Modularity

SSDs and HDDs provide the same memory abstraction: a block device interface

=> There should be no impact on application
application (e.g., DBMS) ?
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Design Assumptions

=> Actually DBMS design very much based on disk characteristics:
(1) locality in the logical space preserved in the physical space,
(2) sequential access is faster than random access.

Parser Query Processor tracks spindle
Compiler Random accesses platter read/write
are avoided — head
Execution Engine
|
[ actuator disk arm
Sequential accesses AN
Indexes are favored: Extent-based pm
allocation, clustering
Concurrency Control ‘ l Recovery Controller
Page-based A Write-ahead logging T diskinterface
age-base ite- ing:
IO quantization; >Buﬁer Manager ’ Physiological logging

In memory and on disk

Identical representation J \
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How do flash devices impact
DBMS design?

(Bottom-up) We need to understand flash devices a bit better.

If they exhibit stable properties
=> Design principles for data management
If they do not exhibit stable properties

=> How to tackle the increased complexity?

(Top-down) We make assumptions about the behaviour of flash
devices, and we design adapted DBMS components. We
then need to make sure that (at least some) flash devices
actually fit our assumptions.

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Tutorial Outline

2. Flash devices characteristics (Luc)

3. Data management for flash devices (Stratis)
4. Two outlooks (Stratis & Philippe)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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A short motivating story (1)

* Alice, Bob, Charlie and Dave want to measure the
performance of a given data intensive algorithm for flash

devices...

* They use different strategies but start from the same 10 traces
of that algorithm and own an MTRON and 2 identical INTEL

X25-M SSDs.

Same model
Same firmware
Al ithm X
gorithm Never used
4& Used
10 Traces

RW (2000, 2.0, 8000)
SR (2000, 16.0)

RW (500, 2.0, 8000)
RW (500, 2.0, 8000)
RR(100, 4.0, 8000)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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A short motivating story (2): Alice & Bob

* Alice believes in datasheets. She builds a simple SSD
simulator configured with basic SSD performance numbers.

* She takes the SSD performance numbers from the datasheet
and runs the simulator using the traces....

Configuration File
Mtron I0S SR RR SW RW

DataSheet |1 70 87 51 9023

2 81 98 64 8723
4 4 104 122 85 8686 -
8
—>
uI

150 167 129 8682

Results
10 Traces
RW (2000, 2.0, 8000) (
SR (2000, 16.0)

RW (500, 2.0, 8000)
RW (500, 2.0, 8000)
RR(100, 4.0, 8000)

* Bob, does not believe in datasheets. He runs simple tests on
both SSDs to obtain the basic performance numbers...He
then runs Alice’s simulator on the traces with his numbers

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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A short motivating story (3): Charlie & Dave

* Charlie, does not believe in Bob! He is more cautious and
runs long tests on the same SSDs and obtain his own basic
performance numbers. Then, he proceeds as Bob.

* Dave does not like simulation and runs the traces directly on
the SSDs.

10 Traces

RW (2000, 2.0, 8000)
SR (2000, 16.0)

RW (500, 2.0, 8000)
RW (500, 2.0, 8000)
RR (100, 4.0, 8000)

What is your take on the resulting measures?

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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A short motivating story (4): Results

(s)

o

30

25

20

15

10 T R

Alice Bob (simple  Charlie (long  Dave (run on Bob (simple  Charlie (long Dave (Runon Dave (Runon
(datasheet) calibration) calibration) MTRON) calibration) calibration) used X25) new X25)

* Mtron and Intel devices behave differently

* Identical Intel devices behave differently

=» Confidence in performance measurements is very low!
* Modeling flash devices seems difficult

* What about designing algorithms for flash devices ?
= e.g., database systems, operating systems, applications ?

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Outline of the first part of this tutorial |

Goal: understand the impact of flash memory on
software (DBMS) design and vice-versa

* We study flash chips, explaining their constraints and trends

* We then consider flash devices as black boxes and try to
understand their performance behavior (UFLIP).
Goal: Find a simple model, basis for a DBMS design

* We hit a wall with the black box approach - we open the box,
l.e., the FTL, and look at FTL techniques.

* Finally, we propose an alternative to complex FTLs, better
adapted for DBMS design.

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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NAND Flash chip performance!

* A single flash chip offers great performance

= e.g., 40 MB/s Read, 10 MB/s Program
= Random access is as fast as sequential access
= Low energy consumption

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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THE

BAD

The severe constraints of NAND flash chips!

* C1: Program granularity:
= Program must be performed at flash page granularity (2KB-16KB)

* C2: Must erase a block before updating a page (256 KB-1MB)
* C3: Pages must be programmed sequentially within a block
* C4: Limited lifetime (from 10% up to 10° erase operations)

_______ _-J—:—>| Program granularity: a page (32 KB)

Pagess must be

|

|

|

'l | programmed L  Erase granularity: a block (1 MB)
l sequentially I

I within the block I

| (256 pages) I

|

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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A bit of electronic to
understand flash chip
constraints and trends

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Flash cells

* Flash cell: resembles a semiconductor transistor
= 2 gates instead of 1
= Floating gate insulated all around by an oxide layer

* Electrons placed on the floating gate are trapped

* The floating gate will not discharge for many years

Oxide
Layer\ Control Gate

Floating Gate

N* N*

Flash cell: a floating
gate transistor

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Flash cells: NOR vs NAND

NOR

NAND

Cell Array

Bit line

Word line

b e e — —

Source line

Contact

Contact

Word line

UnnCeHE

Bit line
I B D

Source line

Cell Size

10F2

4F2

20

NOR

Quick read (Byte)
Slow prog. (Byte)
Slow erase

XIP - Code

NAND

= Slower read (Page)

= Quicker prog. (Page)
= Quicker erase (Block)
= Files, data

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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NAND Flash cells mode of operation

* Programming: Apply a high voltage to the control gate
—> electrons get trapped in the floating gate

* Erasing: Apply a high voltage to the substrate

—> electrons are removed from the floating gate

* Reading: the charge changes the threshold voltage of the cell
= Single level cell (SLC) store one bit per cell: charged = 0, not charged = 1
= Multi level cell (MLC) store 2 bits per cell (4 levels)

the oxyde layer - End of life of the cell

Programming

20V

(Y
20V
CeeEe]| §
Erasing

After a number of program/erase cycle, electrons are getting trapped in

SR
00000

Wear out cell
Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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NAND Architecture & timings

* Based upon independent
blocks (4 Mio cells here)

* Block: smallest erasable unit

* Page: smallest
programmable unit

256
Geometry & Timings pages/
block
MLC ,
Page Size 4 KB [ \1 flash
Block Size 1 MB \\ ] cell
Chip Size 16 GB -

Read Page (us) 150

Program Page (us) |1000

Erase Block (us)  |3000 \ /

NAND flash MICRON MLC:
MT29F 128G08CJABB 34560 bits/page (4 KB + 224 B)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Program Disturb

* Some cells not being
programmed receive
elevated voltage stress
(near the cells being
programmed)

* Stressed cells can
appear weakly programmed

Reducing program disturb:
* Use Error Correction Code to recover errors
°* Program page sequentially within a block

Cooke (FMS 2007) Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Impact on flash chip I0s

* Flash cell technology

=>» Limited lifetime for entire blocks (when a cell wear out,
the entire block is marked as failed).

* NAND Layout and structure

=>»Block is the smallest erase granularity

* Program Disturb
=» Page is the smallest program granularity (74 for SLC)

=» Pages must me programmed sequentially within a block

=» Use of ECC is mandatory - ECC unit is the smallest
read unit (generally 1 or V4 page)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Flash chips: trends

* Density increases (price decreases)
= NAND process migration: faster than Moore’s Law (today 20 nm)

= More bits/cell:
— SLC (1), MLC (2), TLC (3)

* Flash chip layout and structure: larger, parallel
= Larger blocks (32 - 256 Pages)
= Larger pages: 512 B (old SLC) - 16KB (future TLC)
= Dual plane Flash - parallelism within the flash chip

* |ifetime decreases
= 100 000 (SLC), 10 000 (MLC), 5000 (TLC)

* ECC size increases

* Basic performance decreases
= Compensated by parallelism

Abraham (FMS 2011 ), StOragesearCh.Com Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Outline of the first part of this tutorial |

Goal: understand the impact of flash memory on
software (DBMS) design and vice-versa

* We then consider flash devices as black boxes and try to
understand their performance behavior (UFLIP)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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THE

GOOD

The hardware!

* A single flash chip offers great performance
= e.g., 40 MB/s Read, 10 MB/s Program
= Random access is as fast as sequential access
= Low energy consumption

* A flash device contains many (e.g., 32, 64) flash chips and
provides inter-chips parallelism

* Flash devices may include some (power-failure resistant)
SRAM

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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THE

BAD

The severe constraints of flash chips!

* C1: Program granularity:
= Program must be performed at flash page granularity

* C2: Must erase a block before updating a page
* C3: Pages must be programmed sequentially within a block
* C4: Limited lifetime (from 10% up to 10° erase operations)

Pagess must be

|
|
|
'l | programmed L  Erase granularity: a block (1 MB)
| sequentially [

|

|

|

within the block I
(256 pages) I
|

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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AND THE

FTL

The software!, the Flash Translation Layer

= emulates a classical block device and
handle flash constraints

Constraints

MAPPING
Read sector Read page |(C1) Program granularity

, \ (C2) Erase before prog.
Write sector * Program page .
> GARBAGE ﬁ WEAR (C3) Sequential program

COLLECTION W 30\[cl| Erase block within a block

No constraint! (C4) Limited lifetime

SSD Flash chips

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Flash devices are black boxes!

* Flash devices are not flash chips
= Do not behave as the flash chip they contain
= No access to the flash chip API but only through the device API
= Complex architecture and software, proprietary and not documented

— Flash devices are black boxes !

— DBMS design cannot be based on flash chip behavior!

We need to understand flash devices behavior!

DBMS

No
constraint!

SSD

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Understanding flash devices behavior

* Define an experimental benchmark which can exhibit
the behavior of flash devices.

* Define a broad benchmark

= No safe assumption can be made on the device behavior (black box)
— e.g., Random writes are expensive...

= No safe assumption on the benchmark usage!

* Design a sound benchmarking methodology
= |O cost is highly variable and depends on the whole device history!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Methodology (1): Device state

Random Writes — Samsung SSD Random Writes — Samsung SSD
Out of the box After filling the device

=» Enforce a well-defined device state

= performing random write |Os of random size on the whole device
= The alternative, sequential 10s, is less stable, thus more difficult to enforce

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Methodology (2): Startup and running phases

* When do we reach a steady state? How long to run each test?

Startup and running phases for Running phase for the Kingston DTI
the Mtron SSD (RW) flash Drive (SW)

=» Startup and running phase: Run experiments to define
= |Olgnore: Number of |Os ignored when computing statistics
= JOCount: Number of measures to allow for convergence of those statistics.

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Methodology (3): Interferences

Sequential Reads Random Writes Sequential Reads

Pause

A

0.1 : , ,

0 250 500 750 1000 1250 1500

=> Interferences: Introduce a pause between experiments

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Results (1): Samsung, memoright, Mtron

Response time (ms)

0 100 200 300 400 500
10 size (KB)

Granularity for the
Memoright SSD

* For SR, SW and RR,
= linear behavior, almost no latency
= good throughputs with large 10 Size

* For RW, =5ms for a 16KB-128KB 10

Response time (relative to SW)

= N W ~ OO0 O N O ©

Samsung ——
Memoright ——
Mtron —

1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128
TargetSize (MB)

Locality for the Samsung,
Memoright and Mtron SSDs

When limited to a focused area,
RW performs very well

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Results (2): Intel X25-E

Response
time (ps)
SR, SW and RW have
similar performance. »
RR are more costly!
Response
time (us) 10 size (KB)

RW (16 KB) performance
« varies from 100 s to
100 ms!! (x 1000)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Results (3): Fusion IO

37

* Capacity vs Performance tradeoff (so cs > 22 GB)
* Sensitivity to device state

Response 250

time (us)

200

150

100

50

0

10 Size = 4KB

M SR
¥ RR

i N

MaxCap MaxWrite
Low level formatted

HSW
B RW

MaxCap MaxWrite

Fully written

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Conclusion: Flash device behavior

Finally, what is the behavior of flash devices?

Common wisdom
[1Update in place are inefficient?
[[1Random writes are slower than sequential ones?
[ 1 Better not filling the whole device if we want good performance?

r.> Behavior varies across devices and firmware updates

> Behavior depends heavily on the device state!

Is it a problem ?

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Conclusion: Flash device behavior (2)

* Flash devices are difficult (impossible?) to model!

* Hard to build DBMS design on such a moving ground!

Bill Nesheim: Mythbusting Flash Performance

* Substantial performance variability
= Some cases can be even worse than disk

* Performance outliers can have significant adverse impact
* What’s Needed:

— Predictable scaling & performance over time

— Less asymmetry between reads/writes, random/sequential
— Predictable response time

(FMS 2011)

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Outline of the first part of this tutorial 4

Goal: understand the impact of flash memory on
software (DBMS) design and vice-versa

* We hit a wall with the black box approach - we open the box,
l.e., the FTL, and look at FTL techniques

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Opening the

black box !
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FTL — Basic components

Constraints

MAPPING _
Read sector Read page |(C1) Program granularity

_ [ Program page (C2) Erase before prog.
Write sector

1 GARBAGE WEAR (C3) Sequential program
coLLecTioN Namm% | eveLine | B

No constraint! (C4) Limited lifetime

Flash chips

SSD

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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FTL — Page Level Mapping

* Basic page level mapping: translation table stored in SRAM
Q

rN N N D )

Logical
Physical %ﬁ%llllllllll
Block 0 Block 1 Block 2 Block 3

= Problem: the table is too large ! (1 GB for 1 TB flash) (4KB pages)

* Demand-base FTL: DFTL (Gupta et al. 2009)
= The translation table is stored in Flash and cached in SRAM

SRAM Global Translation Cached Mapping

Directory Table
VV va VVVWVWV v
Flash Translation Data
blocks blocks

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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FTL - Mapping: Block Level / Hybrid

O

N N N )

* Pure Block Level Mapping | [TITIT1ITT]

Logical 7
= Translation table at block level
= The page offset remains the same Physical I'_‘é:l

= Does not comply with C3!

Block 0 Block 1 Block 2 Block 3

° Hybrld Mapping
Updates done out-of-place in log blocks
= Data blocks = block mapping
= Log blocks - page mapping
= Proposals differ in the way log blocks are managed
— 1 log block for 1 data block 2> BAST (Kim et al. 2002)
— n log blocks for all data blocks - FAST (Lee et al. 2007)
— Exploiting locality - LAST (Lee et al. 2008)
= Cleaning when log blocks are exhausted - Major costs
= Block mapping for data blocks does not either comply with C3!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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FTL — Garbage Collection

* With page mapping'

Erased
2 [ % I"ii«i« R —— MA44 1111 RV
Block 1 Block 2 Block 3 Block 1 Block 2 Block 3

With hybrid mapping: three cases with BAST

Full Merge Partial Merge Switch

Log(BlockO0)

EEER
Log(BlockO0)

¢
o |/
Erase Erase

m
o
7]
‘°/
w Blo
\
Bi X
d(Block0)
lock 0

* More complex with FAST

= pages of the same block can be on different log blocks

New block 0
Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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FTL-Wear leveling

* Goal: ensure that all blocks of the flash have about the same
erase count (i.e., number of program/erase cycle).

* Basic algorithm: hot-cold swapping (Jung et al. 2007)

= Swap the blocks with min and max erase count.

* Difficulties:
(1) When to trigger the WL algorithm

(2) How to manage erase count, how to select min or max erase count block wrt
the limited CPU and memory resources of the flash controler

(3) What wear leveling strategy?
(4) Interactions between Garbage Collection and Wear Leveling

°* The same difficulties arise with garbage collection!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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FTL: Trends

Detect sequential

<_ . or semi-random

writes

Temporal/spatial
locality?

TRIM
management

Caching

MAPPING

Compression /
deduplication

- GARBAGE YRS WEAR
Adaptivity COLLECTION LEVELING

Background/
on demand

Security /
encryption

Consider
hot/cold data

Dynamic /
static WL

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




FTL designers vs DBMS designers goaf;

* Flash device designers goals:
= Hide the flash device constraints (usability)
= |Improve the performance for most common workloads
= Make the device auto-adaptive
= Mask design decision to protect their advantage (black box approach)

°* DBMS designers goals:
= Have a model for IO performance (and behavior)
— Predictable
— Clear distinction between efficient and inefficient 10 patterns
> To design the storage model and query processing/optimization strategies

= Reach best performance, even at the price of higher complexity (having
a full control on actual 10s)

These goals are conflicting!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Outline of the first part of this tutorial 4

Goal: understand the impact of flash memory on
software (DBMS) design and vice-versa

* Finally, we propose an alternative to complex FTLs, better
adapted for DBMS design

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Minimal FTL: Take the FTL out of equation!

FTL provides only wear leveling, using block mapping to
address C4 (limited lifetime)

°* Pros
= Maximal performance for
- SR, RR, SW
— Semi-Random Writes DBMS o1 Wit -
= Maximal control for the DBMS C°"Str?g'ﬁdczfté§;nso_m¥ g < 2; Er‘:si%r:fr:::;rzg_
(C3) Sequential prog.
. C within a block
ons
= All complexity is handled o [
by the DBMS 2 _ _
- AllIOs must follow C1-C3 = | L (Gay 9]/ (C4) Limited lifetime
— The whole DBMS must < <
be rewritten E Flash chi
= ash chips
— The flash device is =

ded|Cated Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Semi-random writes (uFLIP [CIDRO09])

* Inter-blocks : Random
* Intra-block : Sequential

* Example with 3 blocks of 10 pages:

10 address 5

time

0 10 11 1 20 21 22 2 23 24 12 3 13 14 4 25 26 15 5 16 27 6 7 17 18 19 28 8 29 9

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Bimodal FTL: a simple idea ...

°* Bimodal Flash Devices:

= Provide a tunnel for those |Os that respect constraints C1-C3 ensuring maximal
performance

= Manage other unconstrained IOs in best effort
= Minimize interferences between these two modes of operation

°* Pros
= Flexible DBMS
unconstrained | constr. patterns
= Maximal performance and patterns (C1, C2, C3)
control for the DBMS for I I 1) P it
: rogram granularity
constrained |O0s o [ (C2) Erase before prog.
0 Page map., Garb. Coll. (C3) Sequential prog.
* Cons é (C1,C2, C3) within a block
: ) ' 4) Limited lifeti
= No behavior guarantees for f‘@ < Block ma:ac,4\;Vear Leveling (C4) Limited lifetime
unconstrained 10s. = '
g
o0 Flash chips

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Bimodal FTL: easy to implement

* Constrained |IOs lead to optimal blocks

Page 0 Page 0
Flag = Optimal Page 1 Flag = Non-Optimal Page 1
Page 2 Page 1°
Page 3 Page 1”
Page 4 Page 0’
Page 5 Page 2
CurPos=6 —¥ CurPos=6 —¥

* Optimal blocks can be trivially

= mapped using a small map table in safe cache}
= detected using a flag and cursor in safe cache

16 MB for a 1TB device

* No interferences!

°* No change to the block device interface:
= Need to expose two constants: block size and page size

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Bimodal FTL: better than Minimal + FTIS:

Free
(CurPos = 0)

* Non-optimal block can become
optimal (thanks to GC)

TRIM

Write at @
CurPos++

Garbage collector

Write at @ CurPos++ actions
Page 0 Page 0’
Flag = Non-Optimal Page 1 Flag = Optimal Page 1”
Page 1’ Page 2
Page 1” CurPos=3 |
Page 0’
Page 2
CurPos=6 —»
Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Impact on DBMS Design

Using bimodal flash devices, we have a solid basis
for designing efficient DBMS on flash:

* \WWhat |Os should be constrained?
= j.e., what part of the DBMS should be redesigned?

* How to enforce these constraints? Revisit literature:

= Solutions based on flash chip behavior enforce C1-C3 constraints
= Solutions based on existing classes of devices might not.

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Example: Hash Join on HDD

N — S—
= — —
= D=
3 e —
—3 C—
—— 8 : —

One pass partitioning Multi-pass partitioning (2 passes)

Tradeoff: |0Size vs Memory consumption

* |0Size should be as large as possible, e.g., 256KB — 1 MB

= To minimize 10 cost when writing or reading partitions

* 10Size should be as small as possible

= To minimize memory consumption: One pass partitioning needs
2 x I0Size x NbPartitions in RAM

= Insufficient memory - multi-pass - performance degrades!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Hash join on SSD and on bimodal SSD57

* With non bimodal SSDs

= No behavior guarantees but...
= Choosing I0OSize = Block size (256 KB — 1MB) should bring good performance

* With bimodal SSDs

= Maximal performance are guaranteed (constrained patterns)

= Use semi-random writes

= |OSize can be reduced up to page size (4 — 16 KB) with no penalty
=» Memory savings

=» Performance improvement
=» Predictability!

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Summary
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* Flash chips
= Performance & Energy consumption
= Wired in parallel in flash devices

* Hardware constraints!

(C1) Program granularity, (C2) Erase before program,
(C3) Sequential program within a block,
(C4) Limited lifetime

°* FTL: a complex piece of sofware
= Constantly evolving, no common behavior

= Hard to model
= Hard to build a consistent DBMS design!
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Conclusion: DBMS Design ?
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Complex FTLs
HW Constraints
¥

Complex FTLs

Unpredictable performance

No stable design

Simple FTLs
HW Cimtraints
Bimodal

Predictable & Optimal

Stable Design

* Adding bimodality does not hinder competition between flash device

manufacturers, they can

= bring down the cost of constrained 1O patterns (e.g., using parallelism)

= bring down the cost of unconstrained 10 patterns without jeopardizing DBMS

design
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Tutorial Outline

3. Data management for flash devices (Stratis)
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Flash: a disruptive technology

v Orders of magnitude better performance than HDD
v Low power consumption

v Dropping prices

» ldea: Throw away HDDs and replace everything with Flash SSDs
Not enough capacity
Not enough money to buy the not-enough-capacity

» However, Flash fits very well between DRAM and HDD
DRAM/Flash/HDD price ratio: ~100:10:1 per GB
DRAM/Flash/HDD latency ratio: ~1:10:100

» Integrate Flash into the storage hierarchy
complement existing DRAM memory and HDDs

61 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Outline

» Flash-based device design
Solid state drives
Making SSDs database-friendly
» System-level challenges
Hybrid systems
Storage, buffering and caching
Indexing on flash
Query and transaction processing
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Outline

» Flash-based device design
Solid state drives
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Flash-based Solid State Drives

» Common I/O interface
Block-addressable interface
» No mechanical latency
Access latency independent of the access pattern
30 to 50 times more efficient in IOPS/S per GB than HDDs
» Read / Write asymmetry
Reads are faster than writes
Erase-before-write limitation
» Limited endurance / wear leveling
5 year warranty for enterprise SSDs (assuming 10 complete re-writes per day)
» Energy efficiency
100 — 200 times more efficient than HDDs in IOPS / Watt
» Physical properties
Resistance to extreme shock, vibration, temperature, altitude
Near-instant start-up time
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SSD architecture

. . SSD Architecture
Various form factors — Flash | ... |Flash
anne Chi Chi
PCl-e P _ IntHecr)::ce P Data P | Controller Alp Alp
” ” ) ! ) ! Buffer ) g ECC
SAS (1.8” —3.5”)
y

SATA (1.8” —3.5")

Number of channels
Flash Flash
) A Chi Chi

4 to 16 or more p|  Micro- eyl rAM Channel - c

RAM buﬁ:ers processor > Controller
RN ECC

1MB up to more than 256MB B
Over-provisioning RN .

10% up to 40% gl R

Request Handler LBA-to-PBA Bad Block |
Command Parallelism Map List
LBA-to-PBA | | Write Page Garbage Wear Free Block Meta D
Intra-command mapper Allocator Collector Leveling rgieuc;c ecgaChsta
Inter-command . Firmware (Flash Translation Layer — FTL)
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Off-the-shelf SSDs

Form Factor
Flash Chips

Capacity

Read
Bandwidth

Write
Bandwidth

Random 4kB
Read IOPS

Random 4kB
Write IOPS

Street Price:

66

A

PATA Drive

Consumer

MLC

32 GB

53 MB/s

28 MB/s

3.5k

0.01k

~155/GB
(2007)

15k RPM SAS HDD: ~250-300 IOPS
7.2k RPM SATA HDD: ~80 IOPS

D E
SAS Drive PCl-e card
Enterprise Enterprise
SLC SLC
140GB 450 GB
220 MB/s 700 MB/s
115 MB/s 500 MB/s

~ 1 order of magnitude

45k 140k

> 2 orders of magnitude

B C
SATA Drive SATA Drive
Consumer Consumer
MLC MLC
100 GB 160GB
285 MB/s 250 MB/s
250 MB/s 100 MB/s
30k 35k
10k 0.6k
~4$/GB ~2.5$/GB
(2010) (2010)

16k 70k
~18 S/GB ~ 38 S5/GB
(2011) (2009)
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Read latency

4 KB Random Reads uniformly distributed over the whole medium
50% random data

0,9

0,8

0,6

0,5

Latency (ms)

0,4

0.3 -8B
—=—C
——D
0,1 E

0,2

0 20000 40000 60000 80000 100000 120000 140000 160000

IOPS
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Write latency

4 KB Random Writes uniformly distributed over the whole medium
50% random data

3 .3
B —-®—C =—0—D E
2,5
[ ]
|
2
m
E
>
1,5
9 ; 3
i
1+
—
1
03
0,5
T
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
IOPS
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Mixed workload — Read latency

4 KB 1/0 operations uniformly distributed over the whole medium
50% random data, Queue depth = 32

Average Read Latency
3,5

—0—B --C =¥—=D —A—E

2,5

Response Time (ms)
N

1,5

0,5 M
0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of Writes
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Response Time (ms)

Mixed workload — Write latency

4 KB 1/0 operations uniformly distributed over the whole medium
50% random data, Queue depth = 32

0,6

Average Write Latency A

0,5 e Write Latency

~i—E /

0,4

03 / -—6—-B -@-C %D —A—E
0,2 /
. _H,FA’H

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of Writes

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of Writes
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Outline

» Flash-based device design

Making SSDs database-friendly
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[Lee & Moon, SIGMOD 2007]

In-page logging

» Page updates are logged
. update-in-place
» Log sector for each DB page ST 3
. Database | in-memory

AIIoca-ted \{vhen page become dirty Buffer | data page {E‘ ----- T

» Log region in each flash block (8K) % log sector
: . (512B)

» Page write-backs only involve log-

sector writes

\
Until a merge is required Flash
» Upon read: Memory .,
; t
Fetch log records from flash physical block Sl
. (erase unit): 128K
Apply them to the in-memory page

-

» Same or more number of writes BE= } log region (8K):
16 sectors

But, significant reduction of erasures

However:
— The DBMS needs to control physical placement
— Partial flash page writes are involved
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Parallelism?

Logical block
1
» Still, some operations are more efficient
on hardware
Mapping of the address space to flash planes,
dies and channels 1 '
e Fla_?h Fla§h
ECC, encryption etc. | controler Chip Chip
ECC
Wear-leveling still needs to be done by the . E Izl
device firmware
» The internal device geometry is critical Flash Flash
. . . Chip Chip
to achieve maximum parallelism : Channel 5
> Controller T ﬁl
ECC
» The DBMS needs to be aware of the

geometry to some degree

Logical block size # Flash block size

Logical block size relevant to number of channels, pipelining capabilities on each
channel, etc.
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SSDs — summary

» Flash memory has the potential to remove the I/O bottleneck

Especially for read-dominated workloads
» “SSD”: multiple classes of devices
» Excellent random read latency is universal
» Read and write bandwidth varies widely
» Dramatic difference across random write latencies

» Dramatic differences in terms of economics: S/GB cost, power
consumption, expected lifetime, reliability

» A lot of research to be done towards defining DBMS-specific
interfaces
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Outline

» Flash-based device design

» Solid state drives

» Making SSDs database-friendly
» System-level challenges

» Hybrid systems

v

Storage, buffering and caching
» Indexing on flash
» Query and transaction processing
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Storage, buffering and caching

buffer ........
pool [

SSD cache

demand eviction

paging

SSD persistent
storage

} 76 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Flash memory for persistent storage

—

AN
putfer [ 1 T
ool I A I
B
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Hybrid storage layer

buffer ........ <
pool [

} 78 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




Flash memory as cache
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Outline

» Flash-based device design

» Solid state drives

» Making SSDs database-friendly
» System-level challenges

» Hybrid systems

v

Storage, buffering and caching
» Indexing on flash
» Query and transaction processing
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Hybrid systems

» Problem setup

SSDs are becoming cost-effective, but still not ready to replace HDDs
in the enterprise

Certainly conceivable to have both SSDs and HDDs at the same level
of the storage hierarchy

» Research questions

How can we take advantage of the SSD characteristics when
designing a database?

How can we optimally place data across both types of medium?

» Methodologies
Workload detection for data placement
Load balancing to minimize response time

Caching data between disks
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[K &V, VLDB 2008]

Workload-driven page placement

User-level

page |I/O

Logical I/0O operation§

Page migrations |
D S——

Storage layer

Read/write
operation

2-state task system

82

Flash memory and HDD at the
same level of the storage
hierarchy

Monitor page use by keeping track
of reads and writes

4

Logical operations (i.e., references
only)

Physical operations (actually
touching the disk)

Hybrid model (logical operations
manifested as physical ones)

Identify the workload of a page
and appropriately place it

4
>
>

Read-intensive pages on flash
Write-intensive pages on HDD

Migrate pages when they have
expensed their cost if erroneously
placed
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[Canim, Mihaila, Bhattacharjee, Ross & Lang, VLDB 2009]

Object placement
» Hybrid disk setup

workload device
» Offline tool parameters
Optimal object allocation ¢ \1:

across the two types of disk

» Two phases

Profiling: start with all objects
on the HDD and monitor
system use

Decision: based on profiling
statistics estimate

performance gained from hsso>ie— oD e
moving each object from the - - -

HDD to the SSD
o - N N

» Reduce the decision to a
knapsack prqb!em and apply >
greedy heuristics SSD budget ()

» Implemented in DB2

Database -
engine Read/writes

Performance
gain (s)

Cut-off point

Storage system
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[Soundararajan, Prabhakaran, Balakrishnan, & Wobber, FAST 2010]
[Holloway PhD Thesis, UW-Madison, 2009]

Write caching

» SSD for primary storage, auxiliary HDD

» Take advantage of better HDD write performance to extend
SSD lifetime and improve write throughput
» Writes are pushed to the HDD

Log structure ensures sequential writes
Fixed log size

Once log is full merge writes back to the SSD

[ : ] HDD-resident
write
) log
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[Wu & Reddy, MASCOTS 2010]

Load balancing to maximize throughput

» Setting consists of a transaction processing system with both types
of disk
» Objective is to balance the load across media

Achieved when the response times across media are equal, i.e., a
Wardrop equilibrium
Algorithms to achieve this equilibrium

Page classification (hot or cold)

Page allocation and migration

@rage management layer Hot/cold data \

classifier

Indirect mapping table

. ical Device Physical addr.
Operation Logica V
F;_ ; addr. Data (re)locator
redirector

Device performance

K Ponitor Policy configuration /
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Outline

» Flash-based device design

» Solid state drives

» Making SSDs database-friendly
» System-level challenges

» Hybrid systems

v

Storage, buffering and caching
» Indexing on flash
» Query and transaction processing
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Buffering in main memory

» Problem setup
Flash memory is used for persistent storage
Typical on-demand paging

» Research questions
Which pages do we buffer?

Which pages do we evict and when?

» Methodologies
Flash memory size alighment
Cost-based replacement
Write scheduling
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[Kim & Ahn, FAST 2008]

Block padding LRU (BPLRU)

» Manages the on disk MRU block LRU block
RAM buffer Blk 2 Bk O Blk 3 Blk 1
» Data blocks are 6 0 9
organized at erase-unit —>| 1 | —> —> | 4
granularity o >
LRU queue is on data /'
blocks Logical sector 11 referenced
» On reference, move the Blk3 ./ Blk2 BIk O Blk 1

entire block to the head
of the queue

» On eviction,
sequentially write the S

entire block Victim block:
logical sectors 4, 5 written

88 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




[Kim & Ahn, FAST 2008]

BPLRU: Further optimizations

» Use of padding
» If a data block to be

) FTL reads

missing
written has not been : sectors and
fully read, read what’s replaces data
missing and write g blockin one
sequentially sequential write

» LRU compensation

» Sequentially written
blocks are moved to
the end of the LRU

queue

» Least likely to be
written in the future

Blk 2 Blk O Blk 3 Blk 1

22019 N1

MRU block
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Cost-based replacement

» Choice of victim depends on probability of reference (as
usual)

» But the eviction cost is not uniform
Clean pages bear no write cost, dirty pages result in a write

|/O0 asymmetry: writes more expensive than reads

» It doesn’t hurt if we misestimate the heat of a page
So long as we save (expensive) writes

» Key idea: combine LRU-based replacement with cost-
based algorithms

Applicable both in SSD-only as well as hybrid systems
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[Park, Yung, Kang, Kim & Lee, CASES 2006]

Clean first LRU (CFLRU)

» Buffer pool divided into two regions
»  Working region: business as usual
»  Clean-first region: candidates for eviction
»  Number of candidates is called the window size W

» Always evict from clean-first region
» Evict clean pages before dirty ones to save write cost
» Improvement: Clean-First Dirty-Clustered [Ou, Harder & Jin, DAMON 2009]

»  Cluster dirty pages of the clean-first region based on spatial proximity

. LRU order: PS8, P7, P6, P5
. dirty page . clean page
CFLRU order: P7, P5, P8, P6

Working region “ Clean-first region

P3 P6 P7

MRU LRU
_ WindOW size W —

} 91 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




[K & V, VLDB 2008]

Cost-based replacement in hybrid systems

Similar to the previous idea, but
for hybrid setups

» SSD and HDD for persistent storage

Divide the buffer pool into two
regions
»  Time region: typical LRU

» Cost region: four LRU queues, one
per cost class

» Clean flash
» Clean magnetic
» Dirty flash
> Dirty magnetic
» Order queues based on cost

Evict from time region to cost
region

Final victim is always from the cost
region

Time region

Cost region
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[Stoica, Athanassoulis, Johnson & Ailamaki, DAMON 2009]

Append and pack

» Convert random writes to
N o
» Shim layer between storage

manager and SSD

» On eviction, group dirty pages,
in blocks that are multiples of
the erase unit

» Do not overwrite old versions,
instead write block
group and sequentially

write » Invalidate old versions

tiall .
:q;en o » Pay the price of a few extra
reads but save the cost of
random writes
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Caching in flash memory

» Problem setup
SSD and HDD at different levels of the storage hierarchy
Flash memory used as a cache for HDD pages

» Research questions

When and how to use the SSD as a cache?
Which pages to bring into the cache?
How to choose victim pages?

» Methodologies

Optimal choice of hardware configuration
SSD as a read cache
Flash-resident extended buffer pools
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[Narayanan, Thereska, Donnelly, Elniketi & Rowstron, EuroSys 2009]

Incorporating SSDs into the enterprise

Disciplined way of introducing oplecives

SSD storage _ WA

Migration from HDDs to SSDs regREnts —
Requirements and models | ¥ configuration

Device

analytically to solve the specs N

configuration problem

Simply replacing HDDs with benchmarks
SSDs is not cost-effective

SSDs are best used as a cache
2-tiered architecture

write read

Write-ahead log SSD tier
Log and read cache on the A

SSDs, data on the HDDs ' ’
But even then the benefits are

limited B e e o BB oo
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[Leventhal, Commun. ACM, 51(7) 2008]

The ZFS perspective

» Multi-tiered architecture buffer
» Combination of logging and pool

read caching -------

» Flash memory is good for - --
L L
L

large sequential writes in an
append-only fashion (no -

updates)
» Also good as a read cache for Log Aggregate changes and
HDD data operations predictively push

» Evict-ahead policy

» Aggregate changes from
memory and predictively push

them to flash to amortize high . __ __ S |
write cost e o @ HDDUer

Read cache SSD tier
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[Canim, Mihaila, Bhattacharjee, Ross & Lang, PVLDB 2010]
[Holloway PhD Thesis, UW-Madison, 2009]

DBMS buffer pool extensions

» Again a multi-tiered
apprOaCh (1) read record

(6) write record

» Policies and algorithms for

caching in flash-resident {DF Jeleluec q D}

buffer pOOIS Temperature-based (5) write
(2) read page replacement | |dirty page
» SSD as secondary buffer pool —T(4) write page

Temperature-based eviction

policy from memory to SSD {D minln)] Injuy =] = D](-—(SGS)Du::;;e

Pages are cached only if hot (3) read page
enough not on SSD

» Algorithms for syncing data

v
across the caches ‘ ;u-;‘ |

HDD with logical regions
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[K & V, ADBIS 2011]

Putting it all together

» Extensive study of using flash
memory as cache buffer

» Page flow schemes dictate how pool

data migrates across the tiers .lll.ll <
i

Inclusive: data in memory is also on
flash _l>
BRENERES =

Exclusive: no page is both in
memory and on flash
Lazy: an in-memory page may or _
may not be on flash depending on r
external criteria
» Cost model predicts how a
combination of workload and
scheme will behave on
configuration

» No magic combination; different
schemes for different workloads
and different HHDs and SSDs

HDD persistent

storage
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Outline

» Flash-based device design
» Solid state drives
» Making SSDs database-friendly

» System-level challenges
» Hybrid systems
» Storage, buffering and caching
» Indexing on flash
» Query and transaction processing
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Indexing

» Problem setup

While presenting the same 1/0 interface as HDDs, flash
memory has radically different characteristics

|/O asymmetry, erase-before-write limitation

» Research questions
How should we adapt existing indexing approaches?

How can we design efficient secondary storage indexes —
potentially for more than one metric?

» Methodologies
Avoid expensive operations when updating the index
Self-tuning indexing, catering for flash-resident data
Combine SSDs and HDDs for increased throughput
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[Nath & Gibbons, VLDB 2008]

Semi-random writes

>

Starting point is studying typical write access patterns in the context of
sampling

Fact: random writes hurt performance

But careful analysis of a typical workload shows that writes are rarely
completely random
Rather, they are semi-random
Randomly dispatched across blocks, sequentially written within a block
Similar to the locality principles of memory access
Take advantage of this at the structure design level and when issuing writes
Bulk writes to amortize write cost

...but actually written sequentially within a block
Block 1 Block 2 Block 3 Block n

writes seemingly randomly dispatched in time... time
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[Nath & Kansal, ISPN 2007]

FlashDB: self-tuning B*-tree

» Reads are cheap, writes are log mode
potentially expensive if random

» Two modes for B*-tree nodes

» Disk mode: node is primarily read

» Log mode: node is primarily updated;
instead of overwriting, maintain log
entries for the node and reconstruct on
demand

» Translation layer presents uniform
interface for both modes

» System switches between modes by
monitoring use

Node data g

Read/write operation

migration cost

» Similar logging approach in [Wu, Kuo from disk to log

& Chang, ACM Trans. On Embedded

Systems, 6(3), 2007]

» Difference is in when and how writes
are applied

»  Buffered first, then batched and applied
by the B+-tree FTL 2-state task system

migration cost %
from log to disk
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[Li, He, Luo & Yi, ICDE 2009]

Making B*-trees flash-friendly (the FD-tree)

» Multiple levels in the index
Each progressive level of double size

So long as we are not updating in place, and also performing large sequential writes to
amortize the cost, it’s all good

» FD-tree levels are sorted runs
Head-tree (first levels) in main memory
Once a lower level exceeds its capacity it is merged with the next one
Special entries (fences) are used to maintain the structure and deal with potential skew

When level
is full,
merge with
lower and
! write
each level a sequentially
sorted run

HEE llllllllllllll\illllll e
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Spatial indexing

» Similar observations as with B*-trees can be made on R-trees
They’re tree indexes after all!

Lesson is largely the same: one needs to carefully craft the structure
and its algorithms for the new medium

Batch updates to amortize write costs
[Wu, Chang & Kuo, GIS 2003]

Trade cheap reads for expensive writes by introducing imbalance
[K & V, SSTD 2011]

» Systematic study on performance of R-trees on SSDs in
[Emrich, Graf, Kriegel, Schubert & Thoma, DAMON 2010}
SSDs not as sensitive as HDDs to page size
Capable of addressing higher dimensional data in less time
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[Zeinalipour-Yazti, Lin, Kalogeraki, Gunopulos & Najjar, FAST 2005]

Hash indexing based on MicroHash

» Setup is sensor nodes with limited memory

directory and processing capabilities
S:2 .. . . .
[0-10) | &7 —>! » Similar to extendible hashing techniques
S 1 Directory keeps track of bucket boundaries
wo | o - ntai ime
C:3 e FE N For each bucket maintain the last time it was
50 used S and the number of times it has been
[20-30) | . split C
0 Reorganization Progressive expansion based on equi-width
[30-40) | ., (repartitioning) splitting
if split threshold is 2 Expansion triggered when the number of

splits exceeds some threshold
Infrequently used buckets are flushed to SSD

directory Deletion through garbage collection and
S:2 reorganization
[0-10) .
¢:1 _>! Batch updates are helpful
o3 e » Generalization of linear hashing by lazy
15-20) | 3 - Zplitting in [Xiang, Zhou & Meng, WAIM
[20-30) | >© 008
C:0 Takes advantage of batch updates

[30-40) . evicted to flash
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[Debnath, Sengupta & Li, VLDB 2010]

A design for hybrid systems (FlashStore)

RAM memory: write and read buffers and metadata

First valid page
Hash tabl
index

Key-value pair

destaging

Read cache

Key-value pair

Recency bit vector

0

Flash memory:
recycled append log
organized as a
cyclic list of pages,

Y destaged to HDD
Last valid page based on recency

1

1

Disk presence Bloom filter

0 1

1 0

Keeps track of destaged entries
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[Bernstein, Reid & Das, CIDR 2010]

Transaction management on flash: Hyder

» A different architecture for transaction

managementc Server 1 Server 2
» The target is data centers
> Shared data, multi-core nodes Roll log forward

» Need for scale-out

» Log-structured multi-versioned
database

> “The log is the database”
» No partitioning
» Raw flash chips used for storage

' g Protocol ' -
»  Though SSDs or even HDDs may be TR * . | ;

used as well
» Three-layered architecture

» Storage layer maintains shared log

» Index layer supports lookup and
versioning

» Transaction layer provides isolation and
continuously refreshes the database
cache by running the “meld” algorithm

Assemble local log
copy
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Outline

» Flash-based device design
» Solid state drives
» Making SSDs database-friendly

» System-level challenges

v

Hybrid systems

v

Storage, buffering and caching
» Indexing on flash
» Query and transaction processing
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Query and transaction processing

» Problem setup
Same types of query and transactional workload

Different medium; not what existing approaches have been
optimized for

» Research questions
Are there problems that best fit to SSDs?
Does one need radically different approaches, or slight adaptations?

Where in the storage hierarchy should we use SSDs and how?

» Methodologies
Flash-aware algorithms either by design or through adaptation
Offload parts of the computation to flash memory
Economies of scale
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Old stories, new toys

» Impact of selectivity on predicate evaluation [Mlyers, MSc
Thesis, MIT, 2007]

Overall, as selectivity factor increases performance degrades (needle
in haystack queries)

At times HDDs might outperform SSDs

» Join processing on SSDs using algorithms designed for HDDs
[Do & Patel, DAMON 2009]

SSD joins may well become CPU-bound, so ways to improve the CPU
performance become salient

Trading random reads for random writes pays off

Random writes result in varying |/O and unpredictable performance
Blocked I/O still improves performance

Block size should be a multiple of the page size
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[Tsirogiannis, Harizopoulos, Shah, Wiener & Graefe, SIGMOD 2009]

Impact of storage layout: the FlashJoin

» Storage layout based on celect RL.B, RL.C, B,C,E H,F
PAX R2.E, R2.H, R3.F f

from Rl1, R2, R3

» No need to retrieve what’s wheze  RLA = R2.D and
not necessary ' - B reich
Use a specialized operator

(FlashScan) for on-the-fly
projections over PAX

kernel

_ Fetch

» Delegate join computation  fernl
to two steps |

Fetching data by projecting Join

relevant (the fetch kernel) kernel

Evaluate the join predicate pA=D 4

(through the join kernel)
and materialize the result in

a join index \

R3(F, K, L)

R1(A, B, C) R2(D, E, G, H)
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[Canim, Mihaila, Bhattacharjee, Lang & Ross, ADMS 2010]

Membership queries

» Motivation: poor locality of Bloom filters
» Hurts cache performance in CPU-intensive applications
» Good candidate for offloading to flash memory
» Good random read performance compared to HDDs, but we still
need to cross the memory-disk boundary
» Solution: being lazy pays off
» Defer reads and writes and through buffering
» Introduce hierarchical structure to account for disk-level paging

] Buffer blocks
Buffer layer in memory keep track

BN B B of deferred

reads and writes

Disk pages act as
sub-Bloom filters

0110110001011001 1100110001011011 1100110101011010 0011110001011010

Filter layer on SSD
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[Lee , Moon, Park, Kim & Kim, SIGMOD 2008]

Database operations suited for SSDs

» Given transactional and query processing workloads,
which operations are SSDs better for?

» Study of the I/O patterns

» Identify server storage spaces that exhibit SSD-friendly I/
O patterns
Tables, indexes, temporary storage, log, rollback segments

» Secondary structures are better suited for SSDs
Long sequential writes (no updates) and random reads

Performance improvement more than one order of magnitude
when logging and rollback segments are delegated to SSDs

Factor of two improvement when temporary storage is on SSDs
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[Chen, SIGMOD 2009]

Inexpensive logging in flash memory

» As mentioned, logging is one of the best fits for SSDs
Typically, writes are appended to the log

» The online version of the log is usually small
» USB flash memory is cheap and USB ports are abundant

» Intuition: spread the log across multiple cheap USB flash disks

Provide simple logging interface
Interface
write, flush, checkpoint;

recovery
Request queue

TR R T
\ / A B
o/ Vv \‘ \' \

|l o
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Tutorial Outline

4. Two outlooks (Stratis & Philippe)
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Outlook

» SSD is a diverse class of devices
The only common characteristic of all members of the class is the
excellent random read performance

Underlying technology affects performance in other operations

SSDs do not completely dominate HDDs — not yet
Some types of SSD may be an order of magnitude slower than HDDs in
random writes

» Where do they fit in the database stack?
Persistent storage — maybe in combination with HDDs

Read cache of HDD data

Transactional logging
Using the HDD as a log-structured write-cache for the SSD

Temporary storage and staging area
Any of the above
» More research necessary at the SSD/DB interfaces
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Design Space

Query
Processor

Storage
Manager

oS

RAID Controller

FTL

FD HW
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Sources of increased complexity:
Improve Performance AND predictability,

no stable performance contract at interfaces,
high utilization,
d(techno)/dt

Which IOs are issued?

How are I10s scheduled?

How are 10s interpreted?

Cross-layer issues:
- Avoid duplicating work

- Split work most effectively
- Schedule work most effectively
- Avoid arbitrary limitations

Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




118

aaaaaaaaaaaaaa

Performance Contract

Flash Devices Characteristics:

- Predictable, unconstrained and inefficient : USB key
or low-end SSD

j> Existing DBMS are probably good enough

- Predictable, constrained and efficient : mininal FTL

j> - Which DBMS functions can efficiently
enforce constraints? How?
* Performance Modelling.

- Unpredictable and unconstrainted

j> Derive constraints for efficient regimes
(ad-hoc)
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Flash chips trend: Less into the chip:
Storage Class Flash

OOQ

Scaramuzzo (FMS 201 0) Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Query Processor

Storage Manager

Dealing with complexity .

[Schloser et al, CMU tech report 2003; Schloser et al, FAST 2004; Prabakharan et al., OSDI 2008] oot

FTL

FD HW

From a memory abstraction (block device)...

Associative memory

WRITE (name, value) o WRITE (address, value) | Location-
| Associativity | addressed
READ (name) | layer READ (address) o memory
ERASE (address) (physical layer)

... to a communication abstraction (rich interface)

send(link_name, outgoing_message buffer)

ol WRITE (address, value) Location-

receive(link_name, incoming_message buffer) '| Command i addressed
ive(li i i u

- = - .| Interpreter READ (address) | memory

ERASE (address) (physical layer)

Figures courtesy of Koschaak and Saltzer Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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TRIM command
- ATA/ATAPI Command set

Data Set Management command (TRIM)

TRIM(LBA) is a hint to FTL to unmap LBA-PBA

Unmapping is asynchronous, i.e., fast
(if at all executed)

* Read after TRIM is unspecified
- Pushed by file systems community

Supported in Linux kernel 2.6.33+ and Windows 7/2008R2

Implemented in X25

X25-M has 80GB capacity, but provides LBA for 74,4
GB

- Trimming a whole disk does not take it back to factory

Settl ngs . Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011
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Beyond TRIM

[Nellans et al. FusionlO 2010, Arpaci-Dusseau et al, HotStorage 2010]

read(LBA) — write(LBA) — trim (LBA)

persistent_ trim(LBA) Directive for VA block mapping
exists(LBA) Query state of allocation
atomic_write(LBA'S) Atomically write multiple LBAs
nameless write(data) Return optimal LBA range

Slide courtesy of David Nellans, FusionlO, FMS'11
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Atomic Writes

[Prabakharan et al, OSDI 2008; Ouyang et al, HPCA'11]

Traditional Atomicity Traditional Atomicity Proposed Atomicity in S55
(with Hard Disks) (with SSD)

i i DBMS |
i File System Il
i 2 : Block 10 Layer
FileSystem BMetadata Joumaling, ileSystem MMetadata Joumaling,
Copy-on-Write | Copy-on-Write i Generalized Solid State Storage Layer
Wear-

Re-mappin:

I : i Sector Read/Write
Sector Read/Write | PORTICI—— t somteerstarteatomsrtartassomssrestertenssmrsny ‘ page Read/WnteIBlock Erase
— - Flash Translation Layer i giimeaite pesprie et bl idsmtontiaisimmmn iaiesiooly

| |Re~mapplng| Wear- I i | Controller '

Leveling

: | Block 5'35‘-‘1 lPagc w:itct Page Read ; D :] :
g !

e { |
Disk Drive i NAND Flash Memory

Solid State |
Disk  |NAND Flash Memory Solid State Storage |

Problem: partial writes due to system failure during an in-place update
Solution: copy on write (InnoDB physiological logging + double write buffer);
atomic write at FTL level improve performance significantly (single write) and
reduce DBMS complexity; it also limits concurrency.

Slide courtesy of , Gary Orenstein Fusion 10 Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011




124

Co-design: What's next?

- No in-place updates, do we still need WAL

- If we reconsider physiological logging, do we still
need page-based |0Os? Do we still need the
same representation in memory and on disk?

- Can we leverage prioritized |Os to improve a
form of predictability?

- What does extent-based data allocation buy us?

- How to efficiently deal with arrays of flash
devices?
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Take-away Point # 1

. Flash devices are here to stay
Towards high-performance, energy proportionality

. The key issue is to improve predictability AND
performance

As long as flash devices hide flash chip constraints to
support any types of |IOs, performance
characteristics will remain opaque.
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Take-away Point # 2

« Need to revisit DBMS design decisions
stemming from hard drive characteristics

« Need to revisit strict layering between DBMS,
OS and FTL

The complexity of flash devices should not be
abstracted away if it results in unpredictable and
suboptimal performance.
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Take-away Point # 3

o Lot of work in DB community based on FD
assumptions

« The co-design train has left the station.
FusionlO and Oracle are leading the way.

There is an opportunity for the DB community to stop
running after the technology, and influence the
upcoming developments of flash devices
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