
Efficiently Compiling Efficient Query Plans
for Modern Hardware

Thomas Neumann

Technische Universität München

August 30, 2011



Motivation

Most DBMS offer a declarative query interface

• the user specifies the only desired result

• the exact evaluation mechanism is up the the DBMS

• for relational DBMS: SQL

For execution, the DBMS needs a more imperative representation

• usually some variant of relational algebra

• describes the the real execution steps

• set oriented, but otherwise quite imperative

How to evaluate such an execution plan? How to generate code?

Thomas Neumann Compiling Efficient Query Plans 2 / 18



Motivation (2)

The classical evaluation strategy is the iterator model
(sometimes called Volcano Model, but actually much older [Lorie 74])

• each algebraic operator produces a tuple stream

• a consumer can iterate over its input streams

• interface: open/next/close

• each next call produces a new tuple

• all operators offer the same interface, implementation is opaque

Thomas Neumann Compiling Efficient Query Plans 3 / 18



Motivation (3)

Very popular strategy, but not optimal for modern DBMS

• millions of virtual function calls

• control flow constantly changes between operators

• branch prediction and cache locality suffer

• was fine when I/O dominated everything

• but today large parts of data are in main memory

• CPU costs become an issue

Thomas Neumann Compiling Efficient Query Plans 4 / 18



Motivation (4)

Some DBMS therefore switched to blockwise processing

• like the iterator model, but return a few hundred tuples at a time

Advantages:

• amortizes the costs of next calls

• good locality

• one loop will process many
tuples

• reduces branching, allows for
vectorization

Disadvantages:

• pipelining not (easily) possible

• additional memory reads/writes

Example

Tuple[] Select::next()
tuples=input.next()
if (!tuples)

return tuples
writer=0
for (i=0;i!=tuples.length;++i)

tuples[writer]=tuples[i]
writer+=(checkPred[tuples[i]])

tuples.length=writer
return tuples

Thomas Neumann Compiling Efficient Query Plans 5 / 18



Data-Centric Query Execution

Why does the iterator model (and its variants) use the operator structure
for execution?

• it is convenient, and feels natural

• the operator structure is there anyway

• but otherwise the operators only describe the data flow

• in particular operator boundaries are somewhat arbitrary

What we really want is data centric query execution

• data should be read/written as rarely as possible

• data should be kept in CPU registers as much as possible

• the code should center around the data,
not the data move according to the code

• increase locality, reduce branching

Thomas Neumann Compiling Efficient Query Plans 6 / 18



Data-Centric Query Execution (2)

Example plan with visible pipeline
boundaries:

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

• data is always taken out of a
pipeline breaker and
materialized into the next

• operators in between are passed
through

• the relevant chunks are the
pipeline fragments

• instead of iterating, we can push
up the pipeline

Thomas Neumann Compiling Efficient Query Plans 7 / 18



Data-Centric Query Execution (3)
Corresponding code fragments:

initialize memory of Ba=b, Bc=z , and Γz

for each tuple t in R1

if t.x = 7
materialize t in hash table of Ba=b

for each tuple t in R2

if t.y = 3
aggregate t in hash table of Γz

for each tuple t in Γz

materialize t in hash table of Bz=c

for each tuple t3 in R3

for each match t2 in Bz=c [t3.c]
for each match t1 in Ba=b[t3.b]

output t1 ◦ t2 ◦ t3

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

Thomas Neumann Compiling Efficient Query Plans 8 / 18



Data-Centric Query Execution (4)

Basic strategy:

1. the producing operator loops over all materialized tuples

2. the current tuple is loaded into CPU registers

3. all pipelining ancestor operators are applied

4. the tuple is materialized into the next pipeline breaker

• tries to maximize code and data locality

• a tight loops performs a number of operations

• memory access in minimized

• operator boundaries are blurred

• code centers on the data, not the operators

Thomas Neumann Compiling Efficient Query Plans 9 / 18



Code Generation

The algebraic expression is translated into query fragments.

Each operator has two interfaces:

1. produce
• asks the operator to produce tuples and push it into

2. consume
• which accepts the tuple and pushes it further up

Note: only a mental model!

• the functions are not really called

• they only exist conceptually during code generation

Thomas Neumann Compiling Efficient Query Plans 10 / 18



Code Generation (2)

A simple translation scheme:

B.produce B.left.produce; B.right.produce;
B.consume(a,s) if (s==B.left)

print “materialize tuple in hash table”;
else
print “for each match in hashtable[”

+a.joinattr+“]”;
B.parent.consume(a+new attributes)

σ.produce σ.input.produce
σ.consume(a,s) print “if ”+σ.condition;

σ.parent.consume(attr,σ)
scan.produce print “for each tuple in relation”

scan.parent.consume(attributes,scan)

Thomas Neumann Compiling Efficient Query Plans 11 / 18



Code Generation (3)

How can we evaluate the data-centric query fragments?

• interpretation is simple but unattractive
• adds a lot of branching
• no access to CPU registers, many memory accesses
• can be more expensive than the iterator model itself!

• compilation into machine code is very attractive
• real inlining, no additional branches
• evaluation can be “near optimal” (i.e., everything in CPU registers)
• execution is extremely fast

But how? System R suffered from lack of portability.

Thomas Neumann Compiling Efficient Query Plans 12 / 18



Code Generation (4)

We tried two alternatives:

1. generate C++ code from the query
• translate query into C++ code, compile, load as so
• easy to understand
• can directly interact with DBMS code
• good performance, but compilation is really slow!
• and code generation is surprisingly error prone

2. generate LLVM assembler code
• portable, high-level assembler
• optimizing compiler
• much faster compilation time, good code quality
• unbounded number of registers, strongly typed, many checks
• initially daunting, but now much more pleasant then the C++ version

Thomas Neumann Compiling Efficient Query Plans 13 / 18



Code Generation (5)

Not everything needs to be LLVM
code

• many complex code pieces
remain unchanged

• e.g., spooling to disk

• much more reasonable to
implement it in C++

• only the hot path is performance
critical

• executed for millions of tuples,
but relative simple

• implemented in LLVM code

• keeps the amount of runtime
code down

C++
scan

C
+
+

C+
+

Thomas Neumann Compiling Efficient Query Plans 14 / 18



Evaluation

We implemented this in our HyPer system

• initially we generated C++ code from code fragments

• then, switched to the data-centric LLVM code

Allows for comparisons C++ vs. LLVM

Compared it with other systems

• VectorWise, MonetDB, DB X

• TPC-C for OLTP (only HyPer)

• TPC-H queries adapted to TPC-C for OLAP

Thomas Neumann Compiling Efficient Query Plans 15 / 18



Evaluation (2)

OLTP results

HyPer + C++ HyPer + LLVM

TPC-C [tps] 161,794 169,491

total compile time [s] 16.53 0.81

• here queries are very simple, index structures etc. dominate

• therefore performance is similar

• but compile time differs greatly!

• unacceptable for interactive queries

Thomas Neumann Compiling Efficient Query Plans 16 / 18



Evaluation (3)

OLAP results

Q1 Q2 Q3 Q4 Q5

HyPer + C++ [ms] 142 374 141 203 1416
compile time [ms] 1556 2367 1976 2214 2592

HyPer + LLVM 35 125 80 117 1105
compile time [ms] 16 41 30 16 34

VectorWise [ms] 98 - 257 436 1107

MonetDB [ms] 72 218 112 8168 12028

DB X [ms] 4221 6555 16410 3830 15212

• excellent performance

• compile time is low

• good cache locality, few branch misses (not shown here)

Thomas Neumann Compiling Efficient Query Plans 17 / 18



Conclusion

Data-centric query processing shows excellent performance

• minimizes number of memory accesses

• data can be kept in CPU registers

• increases locality, reduces branching

LLVM is an excellent tool for code generation

• fast, on-demand code generation for arbitrary queries

• good code quality

• portable and well maintained

Thomas Neumann Compiling Efficient Query Plans 18 / 18


