
HYRISE – In-Memory Storage Engine

Martin Grund1, Jens Krueger1,
Philippe Cudre-Mauroux3, Samuel Madden2
Alexander Zeier1, Hasso Plattner1

1Hasso-Plattner-Institute, Germany
2MIT CSAIL, USA
3University of Fribourg, Switzerland

Motivation

■  Enterprise applications have evolved: not just OLAP vs. OLTP

□  Demand for real-time analytics on transactional data

□  High throughput analytics è completely in memory
– Massive RAMs (>1TB/node) enable this for many apps

Example:

■  Available-To-Promise Check – Perform real-time ATP check
directly on transactional data during order entry, without
materialized aggregates of available stocks.

■  Dunning – Search for open invoices interactively instead of
scheduled batch runs.

■  Operational Analytics – Instant customer sales analytics with
always up-to-date data.

HYRISE | Martin Grund | VLDB 2011

2

Our System: HYRISE

■  High throughput on structured enterprise data

□  Completely in main memory

■  Efficiently executed both OLTP and OLAP requests

□  Key idea: Vertically partition tables

■  New algorithms to find the best partitioning for all tables

□  Based on a workload profile

□  Using a cache-miss based cost model

□  Scalable to huge number of tables, wide relations
–  E.g., Many SAP apps have

10K+ tables w/ 100+ columns

HYRISE | Martin Grund | VLDB 2011

3

Memory Hierarchy - Recap

■  Memory hierarchy does not stop
with main memory

■  Motivation for disk-based column
stores, remains valid for main
memory; Avoid loading data that
is not accessed.

HYRISE | Martin Grund | VLDB 2011

4

■  Accessing memory with
different strides
introduces different
latencies Sequential accesses

10x-100x faster
 1

 10

 100

 1000

 8 64 512 4K 32K 256K 2M

C
PU

 C
yc

le
s

pe
r V

al
ue

Stride in Bytes

CPU
Registers

Main Memory

Flash

Hard Disk

H
ig

he
r P

er
fo

rm
an

ceLow
er Price / H

igher
Latency

CPU
Caches

ENTERPRISE BACKGROUND

HYRISE | Martin Grund | VLDB 2011

5

Enterprise Application Characteristics

■  Identify: Why are enterprise applications so complex?

■  Detailed customer data analysis from SAP installations of 12
companies (~32 billion event records analyzed)

■  Enterprise applications have

□  Extremely wide schemas – up to 300 attributes on heavily
used tables

□  Thousands of tables – every ERP installation ~ 70k

□  Changing workload

HYRISE | Martin Grund | VLDB 2011

6

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100%

Typical Tranasactional
Customer Database

TPC-C

W
or

kl
oa

d

Lookup / Read
Table Scan
Range Select

Insert
Modification
Delete

Write:

Read:

Example Enterprise Workload

HYRISE | Martin Grund | VLDB 2011

7

■  Range selects occur often

■  Real world is more complicated than single tuple access

■  With new applications the “read”-gap will even increase

Summary

■  Traditional View

□  OLTP Systems for transactional scenarios

□  OLAP Systems for analytical scenarios

■  Our View: Single System

□  Main Memory

□  Vertically partitioned

□  Single copy of data (no redundancy)
–  To reduce maintenance and overhead of multiple copies

Key challenge: How to perform vertical partitioning to optimize
performance on a given hybrid workload

HYRISE | Martin Grund | VLDB 2011

8

HYBRID
IN-MEMORY STORAGE
ENGINE DESIGN

HYRISE | Martin Grund | VLDB 2011

9

HYRISE Architecture

■  Our focus is on three key aspects

□  In-Memory Data Storage
–  Predicting access costs

□  Layout Decisions
□  Optimizing Query Execution

■  Layout Engine integrates cost
model and workload data

HYRISE | Martin Grund | VLDB 2011

10

Task Based Executor

Query Engine

Layout Engine

Main Memory Storage Layer

Cost Model

Workload Data

HYRISE Partitioning Problem

■  Each table split into a set of non-overlapping containers (partitions)

□  Each container consists of one or more attributes

■  Uses workload as input to find best partitioning

■  The performance of each workload operator on a given layout is
calculated based on cache misses

■  Container overhead cost defines the cost of loading data that is not
accessed by a query operator

HYRISE | Martin Grund | VLDB 2011

11

C1 (a1) C2 (a2 .. a6) C2 (a7 .. a8)

r = (a1 ... a8)

Cost Model – Projections

■  Goal is to predict cost of basic accesses to a container

□  Based on access to multiple attributes over all rows
(projection) and access to all attributes of a container to a
selection of rows (selectivity)

■  Cache misses are precisely calculated, using the offset and width
of the columns projected from the container

□  Not enough to calculate #accessed bytes à understand how
the accessed data is laid out

HYRISE | Martin Grund | VLDB 2011

12

Cache Line Width

Cost Model – Selection

■  Experimental validation shows the match of the model and reality

HYRISE | Martin Grund | VLDB 2011

13

0

0.5

1

1.5

2

2.5

0.001 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901

C
ac

h
e

M
is

se
s

M
ill

io
n

s

Selectivity

Row Store

Row Cost (Model)

Column Store

Column Cost (Model)

Cost Model

■  HYRISE cost model provides means to calculate cache misses for

□  Full projections / partial projections

□  Selections – capturing both independent and overlapping
selections

■  More complex operators can be composed out of the basic
elements

■  Experiments show that cache misses are a good predictor for
performance of in-memory database systems.

HYRISE | Martin Grund | VLDB 2011

14

Cost Model – Cache Miss vs. Cycles

HYRISE | Martin Grund | VLDB 2011

15

0

200

400

600

800

1000

1200

0

1

2

3

4

5

6

7

8

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

M
ill

io
n

s

M
ill

io
n

s

Column Store

Row Store

CPU Cycles Col

CPU Cycles Row

■  Cache misses are a good predictor for performance

LAYOUT SELECTION
HYRISE

HYRISE | Martin Grund | VLDB 2011

16

Layout Selection

■  For narrow tables, finding the optimal layout is easy and can be
done through exhaustive enumeration

■  Enterprise applications have super-wide schemas

□  Up to 300 attributes in our study

■  è millions of possible layouts

HYRISE | Martin Grund | VLDB 2011

17

First Approach

■  Exponential, but multiple pruning steps that reduce the number of
possible layouts in practice

1.  Candidate Generation

□  Determine all primary partitions (the largest partitions that
will not incur any container overhead cost)

2.  Candidate Merging

□  Inspect all permutations of primary partitions to generate
partitions that minimize the overall cost

3.  Layout Generation

□  Generate all valid layouts by exhaustively exploring all
possible combinations of partitions from the second phase

HYRISE | Martin Grund | VLDB 2011

18

Candidate Generation

■  Determining all primary partitions

□  Primary Partition: Largest partition that does not incur
container overhead cost

■  Each operation on a table implicitly splits the attributes into two
subsets

□  The order of the operations can be ignored

■  Recursively splitting each set of attributes of the workload into
subsets for each operation

HYRISE | Martin Grund | VLDB 2011

19

Candidate Generation

HYRISE | Martin Grund | VLDB 2011

20

ORGPHONECOMPANYEMAILNAMEID

Table

Query 1 - Select ID,NAME from Table
where ORG = 9

Query 2 - Select ID,COMPANY from Table
where ORG = 9

ID NAME

ORG

ID COMPANY

ORG

OP 1

OP 2

OP 3

OP 4

ORGPHONECOMPANYEMAILNAMEID

ID NAMEOP 1

ID NAME ORGPHONEEMAIL COMPANY

ORGOP 2

ID NAME PHONEEMAIL COMPANY ORG

ID COMPANY

OP 3

ORG

OP 4

ID EMAIL PHONE ORGNAME COMPANY

ID EMAIL PHONE ORGNAME COMPANY

Candidate Generation

HYRISE | Martin Grund | VLDB 2011

21

Candidate Merging

■  Generate possible permutations of primary partitions

■  Identify partitions that reduce the overall cost for the workload

□  Based on the assumption that the access cost for two
partitions with the same attribute set can be independently
computed

□  Calculation based on the cost model

HYRISE | Martin Grund | VLDB 2011

22

Candidate Merging

HYRISE | Martin Grund | VLDB 2011

23

Primary Permutation

Subset 1 12,000 ✔11,764

Subset 2 12,000 ✔11,764

Subset 3 12,000 ✖36,764

Will be inserted into the global
candidate list

Only an excerpt, 5 attributes
Generate 31 permutations.

ID COMPANY

ID NAME

Primary Partitions Merged Permutation

ORG

ID COMPANY

ID ID ORG

ID NAME

ID COMPANYvs

ID NAME

Candidate Merging

HYRISE | Martin Grund | VLDB 2011

24
Result of Phase 2

ID

NAME ID NAME

EMAIL PHONE

ORG

COMPANY ID COMPANY

IDNAME COMPANY

Layout Generation

■  Generate all possible valid layouts from the result of phase 2

■  Exhaustively explore all combinations

■  A valid layout contains all attributes exactly once

HYRISE | Martin Grund | VLDB 2011

25

Layout Generation

HYRISE | Martin Grund | VLDB 2011

26

✔ EMAIL PHONE

COMPANY

ORG IDNAME COMPANY

EMAIL PHONEORG NAME ID

ORG EMAIL PHONENAME COMPANY ID

ORG COMPANYNAME EMAIL PHONEID

27.7

28.2

28.2

28.5

Cost in 1000

Divide and Conquer Partitioning

■  With huge numbers of attributes the scalability of the original
algorithm degrades

■  Proposal: approximation that clusters frequently used attributes,
by generating optimal sub-layouts for each cluster of primary
partitions

HYRISE | Martin Grund | VLDB 2011

27

EVALUATION

HYRISE | Martin Grund | VLDB 2011

28

Sample Workload

■  Mixed workload that is loosely based on the SAP Sales and
Distribution scenario

□  Total benchmark size of 28 GB data

■  13 Queries

□  9 OLTP Queries with typical CRUD operations

□  3 OLAP-like Queries with high selectivity

□  1 Planning like query with incrementally decreasing selectivity

HYRISE | Martin Grund | VLDB 2011

29

HYRISE Workload Evaluation

■  Layout Example – Input table are sales order headers

□  3 containers: VBELN (id) is used by many different queries;
(KUNNR, AEDAT) are evaluated as predicates together; third
partition is accessed by “SELECT *” operators

HYRISE | Martin Grund | VLDB 2011

30

...AEDAT......KUNNR...VBELN

VBELN AEDATKUNNR ...

HYRISE Workload Evaluation

Total Cycles
0
50
100
150
200
250
300
350
400
450
500

Th
ou

sa
n

d
s

Row Column HYRISE

HYRISE | Martin Grund | VLDB 2011

31
■  HYRISE uses 4x less cycles than

the all row layout, and is about
1.6 times faster than the all
column layout

■  Depending on the query weight
HYRISE’s advantage can vary

HYRISE Workload Evaluation

■  Strong tension
between the
layouts, since most
of the times the
hybrid layout can
only be as good as
one of them

■  The mixed workload
increases the benefit
of a hybrid layout

■  Hybrid layout is
usually better than
the comparable
layout

HYRISE | Martin Grund | VLDB 2011

32

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Total
R 56770 24030 27050 15250 96780 90 13890.3 52301.5 5431.5 32297.6 29687.8 117471.1 4899.2 475949

C 9050 3510 11220 11930 30940 260 2154.8 9416.0 795.5 6032.4 6744.1 45468.6 2939.8 140461.2

H 9290 2910 4010 12810 11660 100 1795.3 7114.8 723.2 6243.5 6852.6 45751.1 2517.7 111778.2

Figure 5: Benchmark Results; graphs at the top show normalized (slowest system=1.0) CPU cycles (left) and normalized L2 cache
misses (right); table shows absolute CPU cycles / 100k

Each item represents one vertical partition in the table. While
there is no particular order for the partitions, all attributes inside the
partition are stored in order. We chose this table as an example since
it is accessed by most of the queries and is partitioned to optimize for
the competing needs of several queries. Since the sales order num-
ber (VBELN) and the related material (MATNR) columns are often
scanned in their entirety (e.g., by Q6 and Q8) the layouter chooses
to store them as single columns. The amount KWENG and the deliv-
ery data AEDAT columns are always accessed together (Q11,Q12)
and thus are stored as a group of two attributes. The rest of the at-
tributes are merged by the layout algorithm to achieve best possible
performance on SELECT* queries.

5.2 Performance
For each of the all-rows, all-columns, and optimal HYRISE de-

signs, we used our cost model to estimate the total cost and also
executed them in the HYRISE query executor. For all queries we
captured the complete query execution time both in CPU cycles and
last level cache misses (in our case L2 cache misses). For this bench-
mark we choose late materializing plan operators (e.g., joins and
aggregates that compute final results by going back to underlying
physical representation) so that the performance of all plan oper-
ators is directly affected by the physical representation. We tried
other (early materialization) plans and found them to be slower for
these queries. Of course, in some settings early materialization-
based operators may perform better than late materialization, but in
these cases the performance of the operators will be unaffected by
our choice of storage layouts.

The results for all of the queries are shown in Figure 5. The ta-
ble shows the absolute number of CPU cycles for each of the three
designs. The graphs compare the normalized performance of each
system in terms of the number of CPU cycles (left), actual number of
L2 cache misses (middle), and number of L2 cache misses predicted
by our model (right). Here “normalized” means that for a given
query, the worst-performing system (in terms of CPU cycles or cache
misses) was assigned a score of 1.0, and the other systems were as-
signed a score representing the fraction of cycles/misses relative to
the worst-performing system. For example, on Q1, all-columns and
HYRISE used about 16% of the cycles as all-rows.

There are several things to note from these results. First, in terms
of actual cache misses and CPU cycles, HYRISE almost always does
as well as or outperforms the best of all-rows and all-columns. For
those queries where HYRISE does not outperform the other layouts,
our designer determines it is preferable to sacrifice the performance

of a few queries to improve overall workload performance.
The second observation is that cache misses are a good predictor

of performance. In general, the differences in cache misses tend to be
more pronounced than the differences in CPU times, but in all cases,
the best performing query is the one with the fewest cache misses.
Third, the model is a good predictor of the actual cache misses.
Though there are absolute differences between the normalized and
predicted cache misses, the relative orderings of the schemes are al-
ways the same. In general, the differences are caused by very hard to
model differences, such as the gcc optimizer (which we ran at -O3),
which can affect the number of cache misses.

In summary, HYRISE uses 4x less cycles than the all-row layout.
HYRISE is about 1.6x faster than the all-column layout on OLTP
queries (1–9), with essentially identical performance on the analyt-
ical queries (10–13). For some OLTP queries it can be up to 2.5x
faster than the all-column layout. Of course, in a hybrid database
system, the actual speedup depends on the mix of these queries – in
practice that many OLTP queries will be run for every OLAP query,
suggesting that our hybrid designs are highly preferable.

5.3 Data Morphing Layouts
In this section, we describe the differences between the behavior

and performance of our layout algorithm and the Hill-Climb Data
Morphing algorithm proposed by Hankins and Patel [12] (the paper
proposes two algorithms; Hill-Climb is the optimized version.) We
could not run Hill-Climb on our entire benchmark because (as noted
in the Introduction) the algorithm scales exponentially in both time
and space with the number of attributes (see Appendix D), and thus
can only be used on relatively simple databases.

Instead, we ran a simplified version of our benchmark, focusing on
the smallest relation (MATH) — the only one Hill-Climb could han-
dle — and query 13 which runs over it. Here, Data Morphing sug-
gests a complete vertical partitioning, which performs 60% worse in
terms of cache misses and 16% worse in terms of CPU cycles com-
pared to the layout used by HYRISE. The reason for this difference
is mainly due to the lack of partial projections in the Data Morphing
cost model. We would expect to see similar performance differences
for other queries if Data Morphing could scale to them, since the
Data Morphing model is missing several key concepts (e.g. partial
projections, data alignment, and query plans—see Appendix D).

6. RELATED WORK
As mentioned in Section 5.3, the approach most related to

HYRISE Layout Tension

■  Q6 (Insert) – HYRISE
has to update
multiple containers,
row must be better

■  Q5 (Select) –
HYRISE clearly
outperforms both
approaches

HYRISE | Martin Grund | VLDB 2011

33

0

0.2

0.4

0.6

0.8

1

1.2

Q6 Q5

Row Column HYRISE

CONCLUSIONS

HYRISE | Martin Grund | VLDB 2011

34

Conclusions

■  Presented HYRISE

□  Main memory hybrid database for mixed (OLTP + OLAP)
workloads

□  Novel algorithms to find optimal workload aware vertical
partitioning

–  Using a highly accurate cache-miss based model

□  On SAP-based benchmark, 4x better than all rows and 60%
better than all columns

■  Come see HYRISE live at our Demo booth

HYRISE | Martin Grund | VLDB 2011

35

THANK YOU

HYRISE | Martin Grund | VLDB 2011

36

