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Motivation 

■  Enterprise applications have evolved: not just OLAP vs. OLTP 

□  Demand for real-time analytics on transactional data 

□  High throughput analytics è completely in memory 
– Massive RAMs (>1TB/node) enable this for many apps 

Example: 

■  Available-To-Promise Check – Perform real-time ATP check 
directly on transactional data during order entry, without 
materialized aggregates of available stocks. 

■  Dunning – Search for open invoices interactively instead of 
scheduled batch runs. 

■  Operational Analytics – Instant customer sales analytics with 
always up-to-date data. 
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Our System: HYRISE  

■  High throughput on structured enterprise data 

□  Completely in main memory 

■  Efficiently executed both OLTP and OLAP requests 

□  Key idea: Vertically partition tables  

■  New algorithms to find the best partitioning for all tables  

□  Based on a workload profile 

□  Using a cache-miss based cost model 

□  Scalable to huge number of tables, wide relations 
–  E.g., Many SAP apps have  

10K+ tables w/ 100+ columns 
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Memory Hierarchy - Recap 

■  Memory hierarchy does not stop 
with main memory 

■  Motivation for disk-based column 
stores, remains valid for main 
memory; Avoid loading data that 
is not accessed. 
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■  Accessing memory with 
different strides 
introduces different 
latencies Sequential accesses 

10x-100x faster 
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ENTERPRISE BACKGROUND 
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Enterprise Application Characteristics 

■  Identify: Why are enterprise applications so complex? 

■  Detailed customer data analysis from SAP installations of 12 
companies (~32 billion event records analyzed) 

■  Enterprise applications have  

□  Extremely wide schemas – up to 300 attributes on heavily 
used tables 

□  Thousands of tables – every ERP installation ~ 70k 

□  Changing workload 
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■  Range selects occur often 

■  Real world is more complicated than single tuple access 

■  With new applications the “read”-gap will even increase 



Summary 

■  Traditional View 

□  OLTP Systems for transactional scenarios 

□  OLAP Systems for analytical scenarios 

■  Our View: Single System 

□  Main Memory 

□  Vertically partitioned 

□  Single copy of data (no redundancy) 
–  To reduce maintenance and overhead of multiple copies 

Key challenge: How to perform vertical partitioning to optimize 
performance on a given hybrid workload 
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HYBRID 
IN-MEMORY STORAGE 
ENGINE DESIGN 
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HYRISE Architecture 

■  Our focus is on three key aspects 

□  In-Memory Data Storage 
–  Predicting access costs 

□  Layout Decisions 
□  Optimizing Query Execution 

■  Layout Engine integrates cost 
model and workload data 
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HYRISE Partitioning Problem  

■  Each table split into a set of non-overlapping containers (partitions) 

□  Each container consists of one or more attributes 

■  Uses workload as input to find best partitioning 

■  The performance of each workload operator on a given layout is 
calculated based on cache misses 

■  Container overhead cost defines the cost of loading data that is not 
accessed by a query operator 
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C1 (a1) C2 (a2 .. a6) C2 (a7 .. a8)

r = (a1 ... a8) 



Cost Model – Projections 

■  Goal is to predict cost of basic accesses to a container 

□  Based on access to multiple attributes over all rows 
(projection) and access to all attributes of a container to a 
selection of rows (selectivity) 

■  Cache misses are precisely calculated, using the offset and width 
of the columns projected from the container 

□  Not enough to calculate #accessed bytes à understand how 
the accessed data is laid out 
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Cache Line Width



Cost Model – Selection 

■  Experimental validation shows the match of the model and reality 
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Cost Model 

■  HYRISE cost model provides means to calculate cache misses for 

□  Full projections / partial projections 

□  Selections – capturing both independent and overlapping 
selections 

■  More complex operators can be composed out of the basic 
elements 

■  Experiments show that cache misses are a good predictor for 
performance of in-memory database systems.  
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Cost Model – Cache Miss vs. Cycles 
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LAYOUT SELECTION 
HYRISE 
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Layout Selection 

■  For narrow tables, finding the optimal layout is easy and can be 
done through exhaustive enumeration 

■  Enterprise applications have super-wide schemas  

□  Up to 300 attributes in our study 

■  è millions of possible layouts 
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First Approach  

■  Exponential, but multiple pruning steps that reduce the number of 
possible layouts in practice 

1.  Candidate Generation 

□  Determine all primary partitions (the largest partitions that 
will not incur any container overhead cost) 

2.  Candidate Merging 

□  Inspect all permutations of primary partitions to generate 
partitions that minimize the overall cost 

3.  Layout Generation 

□  Generate all valid layouts by exhaustively exploring all 
possible combinations of partitions from the second phase 
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Candidate Generation 

■  Determining all primary partitions 

□  Primary Partition: Largest partition that does not incur 
container overhead cost 

■   Each operation on a table implicitly splits the attributes into two 
subsets 

□  The order of the operations can be ignored  

■  Recursively splitting each set of attributes of the workload into 
subsets for each operation 
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Candidate Generation 
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ORGPHONECOMPANYEMAILNAMEID

Table

Query 1 - Select ID,NAME from Table 
where ORG = 9 

Query 2 - Select ID,COMPANY from Table 
where ORG = 9 

ID NAME
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ID COMPANY

ORG

OP 1

OP 2

OP 3

OP 4



ORGPHONECOMPANYEMAILNAMEID

ID NAMEOP 1
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ID COMPANY

OP 3

ORG
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Candidate Generation 
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Candidate Merging 

■  Generate possible permutations of primary partitions 

■  Identify partitions that reduce the overall cost for the workload 

□  Based on the assumption that the access cost for two 
partitions with the same attribute set can be independently 
computed 

□  Calculation based on the cost model 
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Candidate Merging 
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Primary Permutation 

Subset 1 12,000 ✔11,764 

Subset 2 12,000 ✔11,764 

Subset 3 12,000 ✖36,764 

Will be inserted into the global 
candidate list 

Only an excerpt, 5 attributes 
Generate 31 permutations. 
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Candidate Merging 
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Layout Generation 

■  Generate all possible valid layouts from the result of phase 2 

■  Exhaustively explore all combinations 

■  A valid layout contains all attributes exactly once 
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Layout Generation 
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Divide and Conquer Partitioning 

■  With huge numbers of attributes the scalability of the original 
algorithm degrades 

■  Proposal: approximation that clusters frequently used attributes, 
by generating optimal sub-layouts for each cluster of primary 
partitions 
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EVALUATION 
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Sample Workload 

■  Mixed workload that is loosely based on the SAP Sales and 
Distribution scenario 

□  Total benchmark size of 28 GB data 

■  13 Queries 

□  9 OLTP Queries with typical CRUD operations 

□  3 OLAP-like Queries with high selectivity 

□  1 Planning like query with incrementally decreasing selectivity 
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HYRISE Workload Evaluation 

■  Layout Example – Input table are sales order headers 

□  3 containers: VBELN (id) is used by many different queries; 
(KUNNR, AEDAT) are evaluated as predicates together; third 
partition is accessed by “SELECT *” operators 
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HYRISE Workload Evaluation 
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■  HYRISE uses 4x less cycles than 

the all row layout, and is about 
1.6 times faster than the all 
column layout 

■  Depending on the query weight 
HYRISE’s advantage can vary 



HYRISE Workload Evaluation 

■  Strong tension 
between the 
layouts, since most 
of the times the 
hybrid layout can 
only be as good as 
one of them 

■  The mixed workload 
increases the benefit 
of a hybrid layout 

■  Hybrid layout is 
usually better than 
the comparable 
layout 

HYRISE | Martin Grund | VLDB 2011 

32 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Total
R 56770 24030 27050 15250 96780 90 13890.3 52301.5 5431.5 32297.6 29687.8 117471.1 4899.2 475949

C 9050 3510 11220 11930 30940 260 2154.8 9416.0 795.5 6032.4 6744.1 45468.6 2939.8 140461.2

H 9290 2910 4010 12810 11660 100 1795.3 7114.8 723.2 6243.5 6852.6 45751.1 2517.7 111778.2

Figure 5: Benchmark Results; graphs at the top show normalized (slowest system=1.0) CPU cycles (left) and normalized L2 cache
misses (right); table shows absolute CPU cycles / 100k

Each item represents one vertical partition in the table. While
there is no particular order for the partitions, all attributes inside the
partition are stored in order. We chose this table as an example since
it is accessed by most of the queries and is partitioned to optimize for
the competing needs of several queries. Since the sales order num-
ber (VBELN) and the related material (MATNR) columns are often
scanned in their entirety (e.g., by Q6 and Q8) the layouter chooses
to store them as single columns. The amount KWENG and the deliv-
ery data AEDAT columns are always accessed together (Q11,Q12)
and thus are stored as a group of two attributes. The rest of the at-
tributes are merged by the layout algorithm to achieve best possible
performance on SELECT* queries.

5.2 Performance
For each of the all-rows, all-columns, and optimal HYRISE de-

signs, we used our cost model to estimate the total cost and also
executed them in the HYRISE query executor. For all queries we
captured the complete query execution time both in CPU cycles and
last level cache misses (in our case L2 cache misses). For this bench-
mark we choose late materializing plan operators (e.g., joins and
aggregates that compute final results by going back to underlying
physical representation) so that the performance of all plan oper-
ators is directly affected by the physical representation. We tried
other (early materialization) plans and found them to be slower for
these queries. Of course, in some settings early materialization-
based operators may perform better than late materialization, but in
these cases the performance of the operators will be unaffected by
our choice of storage layouts.

The results for all of the queries are shown in Figure 5. The ta-
ble shows the absolute number of CPU cycles for each of the three
designs. The graphs compare the normalized performance of each
system in terms of the number of CPU cycles (left), actual number of
L2 cache misses (middle), and number of L2 cache misses predicted
by our model (right). Here “normalized” means that for a given
query, the worst-performing system (in terms of CPU cycles or cache
misses) was assigned a score of 1.0, and the other systems were as-
signed a score representing the fraction of cycles/misses relative to
the worst-performing system. For example, on Q1, all-columns and
HYRISE used about 16% of the cycles as all-rows.

There are several things to note from these results. First, in terms
of actual cache misses and CPU cycles, HYRISE almost always does
as well as or outperforms the best of all-rows and all-columns. For
those queries where HYRISE does not outperform the other layouts,
our designer determines it is preferable to sacrifice the performance

of a few queries to improve overall workload performance.
The second observation is that cache misses are a good predictor

of performance. In general, the differences in cache misses tend to be
more pronounced than the differences in CPU times, but in all cases,
the best performing query is the one with the fewest cache misses.
Third, the model is a good predictor of the actual cache misses.
Though there are absolute differences between the normalized and
predicted cache misses, the relative orderings of the schemes are al-
ways the same. In general, the differences are caused by very hard to
model differences, such as the gcc optimizer (which we ran at -O3),
which can affect the number of cache misses.

In summary, HYRISE uses 4x less cycles than the all-row layout.
HYRISE is about 1.6x faster than the all-column layout on OLTP
queries (1–9), with essentially identical performance on the analyt-
ical queries (10–13). For some OLTP queries it can be up to 2.5x
faster than the all-column layout. Of course, in a hybrid database
system, the actual speedup depends on the mix of these queries – in
practice that many OLTP queries will be run for every OLAP query,
suggesting that our hybrid designs are highly preferable.

5.3 Data Morphing Layouts
In this section, we describe the differences between the behavior

and performance of our layout algorithm and the Hill-Climb Data
Morphing algorithm proposed by Hankins and Patel [12] (the paper
proposes two algorithms; Hill-Climb is the optimized version.) We
could not run Hill-Climb on our entire benchmark because (as noted
in the Introduction) the algorithm scales exponentially in both time
and space with the number of attributes (see Appendix D), and thus
can only be used on relatively simple databases.

Instead, we ran a simplified version of our benchmark, focusing on
the smallest relation (MATH) — the only one Hill-Climb could han-
dle — and query 13 which runs over it. Here, Data Morphing sug-
gests a complete vertical partitioning, which performs 60% worse in
terms of cache misses and 16% worse in terms of CPU cycles com-
pared to the layout used by HYRISE. The reason for this difference
is mainly due to the lack of partial projections in the Data Morphing
cost model. We would expect to see similar performance differences
for other queries if Data Morphing could scale to them, since the
Data Morphing model is missing several key concepts (e.g. partial
projections, data alignment, and query plans—see Appendix D).

6. RELATED WORK
As mentioned in Section 5.3, the approach most related to



HYRISE Layout Tension 

■  Q6 (Insert) – HYRISE 
has to update 
multiple containers, 
row must be better 

■  Q5 (Select) – 
HYRISE clearly 
outperforms both 
approaches 
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CONCLUSIONS 

HYRISE | Martin Grund | VLDB 2011 

34 



Conclusions 

■  Presented HYRISE 

□  Main memory hybrid database for mixed (OLTP + OLAP) 
workloads 

□  Novel algorithms to find optimal workload aware vertical 
partitioning 

–  Using a highly accurate cache-miss based model 

□  On SAP-based benchmark, 4x better than all rows and 60% 
better than all columns 

■  Come see HYRISE live at our Demo booth 
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THANK YOU 
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