Optimizing Query Answering
under
Ontological Constraints

Giorgio Orsi*? and Andreas Pieris?

YInstitute for the Future of Computing
Oxford Martin School
University of Oxford

“Department of Computer Science

University of Oxford
OXFORD
MARTIN
SCHOOL UNIVERSITY OF
OXFORD
VLDB 2011 N

JAMES MARTIN 21ST CENTURY SCHOOL

Ontological Databases

Ontological Reasoning DB Constraints

N/

Ontological DB

Ontological Databases

Ontological Reasoning DB Constraints

N/

Ontological DB

o~

ABOX Dy

TBox

Ontological Databases

Ontological Reasoning DB Constraints

N/

Ontological DB

o~

ABOX Dy

[
TBox \<Q(X) < 3Y B(X,Y)

Ontological Databases

Ontological Reasoning DB Constraints

N/

Ontological DB

o~

ABOX Dy

[
TBox \<Q(X) « 3Y O(X,Y)

< {t|DUZXZEdud(tu)}

Ontological Constraints (examples)

Concept Inclusions: VX emp(X) — person(X)

(Inverse) Relation Inclusion: VXYY manages(X,Y) — isManaged(Y,X)

Relation Transitivity: VYXVYYVYZ mgs(X,Y),mgs(Y,Z) —» mgs(X,2)
Participation: VX emp(X) — 3Y report(X,Y)
Disjointness: vX emp(X), customer(X) — L

Functionality: VXVYVZ reports(X,Y),reports(X,Z) > Y =Z

Datalog™ [cali et Al, PODS 09]

— Datalog variant allowing in the head:
- J-variables — TGDs VXYY ®(X,Y) - dZ Y(X,2)
- Equality atoms — EGDs VX ®(X) — X=X, ~ Datalog*
- Constant false (1) — NCs VX ®(X) > L

Datalog™ [cali et Al, PODS 09]

— Datalog variant allowing in the head:
- J-variables — TGDs VXYY ®(X,Y) - dZ Y(X,2)
- Equality atoms — EGDs VX ®(X) — X=X, ~ Datalog*
- Constant false (1) — NCs VX ®(X) > L

— But, query answering under Datalog* is undecidable

Datalog™ [cali et Al, PODS 09]

— Datalog variant allowing in the head:
- J-variables — TGDs VXYY ®(X,Y) - dZ Y(X,2)
- Equality atoms — EGDs ¥X ®(X) — X=X; ~ Datalog*
- Constant false (1) — NCs VX ®(X) > L

— But, query answering under Datalog* is undecidable

— Datalog* is syntactically restricted — Datalog*

Datalog™ [cali et Al, PODS 09]

— Datalog variant allowing in the head:
- J-variables — TGDs VXYY ®(X,Y) - dZ Y(X,2)
- Equality atoms — EGDs ¥X ®(X) — X=X; ~ Datalog*
- Constant false (1) — NCs VX ®(X) > L

— But, query answering under Datalog* is undecidable

— Datalog* is syntactically restricted — Datalog*

— TGDs more expressive than inclusion dependencies

VYDVPVA runs(D,P),area(P,A) — JdE employee(E,D,A)

The Chase Procedure

Input: Database D, set of TGDs X

Output: Amodel of DU Z

D"~
person(john)

VX person(X) — JY father(Y,X)

VXVY father(X,Y) — person(X)

chase(D,2)=D U ?

The Chase Procedure

Input: Database D, set of TGDs X

Output: Amodel of DU X

D"~
person(john)

_ v

VX person(X) — JY father(Y,X) VXVY father(X,Y) — person(X)

‘
chase(D,X) = D U {father(z,,john)

The Chase Procedure

Input: Database D, set of TGDs X

Output: Amodel of DU X

D"~
person(john)

VX person(X) — JY father(Y,X) VXVY father(X,Y) — person(X)

chase(D,X) = D U {father(z,,john), person(z,)

The Chase Procedure

Input: Database D, set of TGDs X

Output: Amodel of DU X

D"~
person(john)

VX person(X) — JY father(Y,X) VXVY father(X,Y) — person(X)

S~
N§
S

S~
~
‘N
~

~o

chase(D,X) = D U {father(z,,john), person(z,), father(z,,z,)

The Chase Procedure

Input: Database D, set of TGDs X

Output: Amodel of DU X

D"~
person(john)

VX person(X) — JY father(Y,X) VXVY father(X,Y) — person(X)

\
A

chase(D,X) = D U {father(z,,john), person(z,), father(z,,z,), ...}

Query Answering via Chase

DUZFQ <« chase(D,2)FQ
[see, e.g., Deutsch, Nash & Remmel, PODS 08]

Query Answering via Rewriting

a

Query Answering via Rewriting

a
\ J
Y .
compilation

Query Answering via Rewriting

a
\ J
- Y ! .
Qs compilation
< .
u evaluation

Chase vs Rewriting

L rewriting ‘J

0,3

D

/

Linear TGDs

YXYY r(X,Y) — 3Z ¥(X,2)

/

single body atom

— Properly generalize inclusion dependencies.
— Enjoy the bounded-derivation depth property.

— FO-rewritable - Query Answering in AC0 (data complexity).

FO-rewritability: example [cottiob et AL, ICDE 11]

2 promoter(X) — 3Y promotesTo(X,Y)
promotesTo(X,Y) — customer(Y)

Q 4« promotesTo(A,B), customer(B)

Qs

g < promotesTo(A,B), customer(B) (original query)

FO-rewritability: example [cottiob et AL, ICDE 11]

2 promoter(X) — 3Y promotesTo(X,Y)
promotesTo(X,Y) — customer(Y)

Q 4« promotesTo(A,B), customer(B)

Qs

q < promotesTo(A,B), customer(B) {Y=B}

g < promotesTo(A,B), customer(V,,B) (V,is fresh)

FO-rewritability: Example [cotiiob et Al ICDE 11]

2 promoter(X) — 3Y promotesTo(X,Y)
promotesTo(X,Y) — customer(Y)

Q 4« promotesTo(A,B), customer(B)

Qs

g < promotesTo(A,B), customer(B) o
factorization

g < promotesTo(A,B), promotesTo(V,,B) —— ans(A) < promotesTo(A,B)
{A=Vy}

FO-rewritability: example [cottiob et AL, ICDE 11]

2 promoter(X) — 3Y promotesTo(X,Y)
promotesTo(X,Y) — customer(Y)

Q 4« promotesTo(A,B), customer(B)

Qs
g <« promotesTo(A,B), customer(B)
g < promotesTo(A,B) {X=A,Y =B}

g < promoter(A)

FO-rewritability: example [cottiob et AL, ICDE 11]

2 promoter(X) — 3Y promotesTo(X,Y)
promotesTo(X,Y) — customer(Y)

Q 4« promotesTo(A,B), customer(B)

Qs

g < promotesTo(A,B), customer(B)

UCQ rewriting

< promotesTo(A,B _
b A.B) (first-order)

g < promoter(A)

FO-rewritability

— Desirable properties of a FO-rewriting:
- independent on the DB
—> executable by any DBMS
—> easy to compute (e.g., polynomial time)
- small size (e.g., polynomial size)

FO-rewritability

— Desirable properties of a FO-rewriting:
- independent on the DB
—> executable by any DBMS
—> easy to compute (e.g., polynomial time)
- small size (e.g., polynomial size)

— Unions of Conjunctive Queries (UCQs)

Calvanese et Al, JAR 07

— executable by any DBMS Perez Urbina et Al, JAL 09

- DB independent Cali’ et Al, PODS 09
- easy to optimize and distribute Gottlob et Al, ICDE 11
and others...

—> worst-case exponential size in Q and

FO-rewritability

— Combined and hybrid FO-rewriting

- good computational properties Perez Urbina et Al, JAL 09
(e.g., polynomial in size) Kontchakov et Al., KR 10

_ Gottlob and Schwentick, DL 11
—> requires access to the DB

FO-rewritabllity

— Combined and hybrid FO-rewriting
—> good computational properties
(e.g., polynomial in size)
—> requires access to the DB

— Purely intensional Datalog rewriting
—> very compressed representation
- purely intensional

Perez Urbina et Al, JAL 09
Kontchakov et Al., KR 10
Gottlob and Schwentick, DL 11

Perez Urbina et Al, JAL 09
Rosati and Almatelli., KR 10

—> requires view-creation or Datalog engine

Datalog Rewriting: Keep it First-Order!

— A Datalog query is (in general) not a first-order query
—> a non-recursive Datalog query is a first-order query
- a bounded Datalog query is a first-order query

Datalog Rewriting: Keep it First-Order!

— A Datalog query is (in general) not a first-order query
—> a non-recursive Datalog query is a first-order query
- a bounded Datalog query is a first-order query

— Input:
- a (w.l.o.g. boolean) conjunctive query Q = <q,p>

Q : q(X) € p(X), s(X,Y) < <q, q(X) €p(X),s(X)Y) >
- a set of linear TGDs X

— Qutput:
—> a bounded Datalog query Qs = <q,TTy >

Datalog Rewriting: skolemization (and renaming)

Y

r(X,Y) —» 3Z s(Y,2)
s(X,Y) —» 3Z p(Y,Y,2)
pP(X,Y,Z2) - t(2)

Datalog Rewriting: skolemization (and renaming)

2 2
r(X,Y) —» 3Z s(Y,2) r((Xy,Yq) = s(Yq,fi(Y,))
s(X,Y) —» 3Z p(Y,Y,2) E—— S(X,,Y,) = p(Y,,Y,,1(Y,))

pP(X,Y,Z) — t(2) P(X3,Y3,Z3) > 1(Z;)

Datalog Rewriting: Skolemization (and renaming)

2 2

r(X,Y) —» 3Z s(Y,2) r((Xy,Yq) = s(Yq,fi(Y,))
s(X,Y) —» 3Z p(Y,Y,2) E—— S(X,,Y,) = p(Y,,Y,,1(Y,))
p(X,Y,Z) = t(2) P(X3,Y3,Z3) = t(Zy)

— 2; and X are equisatisfiable (not equivalent)

— Introduce one Skolem function for each existential variable

Datalog Rewriting: Rule Saturation

— Apply resolution inference rule to rules in X
- at least one of the rules contains Skolem terms

Op: 1 (Xy, Y1) = s(Yy,f1(Yy))
0, 8(X,,Y5) = (Y2, Y2, f5(Y)))
O3: P(X3,Y3,Z3) = U(Z3)

Datalog Rewriting: Rule Saturation

— Apply resolution inference rule to rules in X
- at least one of the rules contains Skolem terms

% (2]
Op: 1 (Xy,Yq) = s(Y,fi(Yy))

0, 8(X5,Y5) = P(Y3,Y2,15(Y),)) r(Xy,Yy) — p(fl(Yl) (Y1), 15(f1(Y 1))
031 P(X3,Y3,43) = t(Z5)

Datalog Rewriting: Properties of Rule Saturation

— [Z] mimics the chase derivations.

Datalog Rewriting: Properties of Rule Saturation

— [Z] mimics the chase derivations.

Op: 1 (Xy, Y1) = s(Yq,f1(Yq))
0,1 S(X5,Y5) = p(Y,, Y2, 15(Y)))
O3: P(X3,Y3,Z3) = 1(Zy)

a1
Jo[12] l

7T T(a'.ab) RN

s(b,f1(b))

a{ o[123]

pUAD), Fi(b).f(f1(B)

g SJ _x;
7
/ /£
s

t((1)) <

Datalog Rewriting: Properties of Rule Saturation

— [Z] mimics the chase derivations.

—r(a,b)-—--_
I/ g Jl \
Jo{12]
0111 (Xy, Y1) = s(Y1,f1(Y1)) s(b,11(6))
0,1 S(Xz,Y3) = P(Y2,Y2,15(Y>)) a:l of123]
03 P(X3,Y3,Z5) > (Zs)

PUAB).LO).FL D))

g BJ _x;
7
/ /£
s

t(f2(f1(0)
— [Z¢] depends only on .

— [Z¢] Is possibly infinite
—linear TGDs have BDDP: suffices to construct it up to k steps [Z],.

Datalog Rewriting: Query Saturation

— resolve [X] with the query Q.
- use only rules with Skolem terms.

Datalog Rewriting: Query Saturation

— resolve [X] with the query Q.
- use only rules with Skolem terms.

[Z] o
O, : 1 (Xy,Yq) = s(Yy,f1(Yy)) Q «s(A,B), p(B,B,C)
5,1 (X2, Y2) = P(Y2, Y2, (Y 2))

O5: pP(Xa,Y3,Z35) — t(Zy)

[015] : 1 (X1, Y1) = p(Fi(Yq) ,T1(Y4), f(f1 (Y1)

l

[Q.%] Q « r(Xy,Yq), P(f1(Y1), £1(Y4).,C)

Datalog Rewriting: Query Saturation

— bypasses chase derivations with function symbols

/.__.} r(a,b)
Q
Q <~ S(A’B)1 p(B1B,C) S(b,fl(b))
:i.) g;'j ;
[3] p(f1(0), fi().fz(flg)
Oy 11 (X1,Y1) = S(Y1,f1(Y1)) h

5, S(X5Ys) = P(Y,,Y,F5(Ys)) L HAGGGD)

O3 P(X3,Y3,Z3) — 1(Zy) q < T:EX1,3’1),P(f1(Y1),f1I(Y1),O)

[O15] i T (X, Y1) = P(f1(Y4) ,F1 (Y1), T2(f1(Y1)))

Datalog Rewriting: Finalization

— keep only the function-free rules from [Z] U [Q,X]

— derivations producing certain answers are captured by
function-symbol-free rules.

Optimizations: Pruning

— use the predicate graph to reduce the number of rules in X,

X Q
Oy : 1 (X1,Y3) = (Y1, 11(Y3)) Q «s(A,B), p(B,B,C)
0,1 S(X5,Y5) = p(Y,, Y5, 15(Y)))
O3 P(X3,Y3,43) = t(Zs)

Optimizations: Pruning

— use the predicate graph to reduce the number of rules in X,

X Q
5,11 (Xy,Yq) = s(Y,f, (YY) Q < s(A,B), p(B,B,C)
0, S(X,,Y,) = (Y2, Y2, f5(Y)))

Optimizations: Pruning

— use the predicate graph to reduce the number of rules in X,

X Q
5,11 (Xy,Yq) = s(Y,f, (YY) Q < s(A,B), p(B,B,C)
0, S(X,,Y,) = (Y2, Y2, f5(Y)))
&3 +P(KgrYara)—HZs)

— we are no longer independent on Q!

Optimizations: Query Elimination

— eliminate implied atoms during query saturation

2 Q

Op 11 (X, Y1) = s(Yy, (Y1) Q « s(A,B), p(B,B,C)
0, 8(X,,Y3,) = p(Y,, Y, 15(Y)))

Optimizations: Query Elimination

— eliminate implied atoms during query saturation

2 Q

Op 11 (X, Y1) = s(Yy, (Y1) Q « s(A,B), p(B,B,C)
0, 8(X,,Y3,) = p(Y,, Y, 15(Y)))

l

s(A,B) F; p(B,B,C) atom coverage

Optimizations: Query Elimination

— eliminate implied atoms during query saturation

2 Q

Op 11 (X, Y1) = s(Yy, (Y1) Q « s(A,B), p(B,B,C)
0, 8(X,,Y3,) = p(Y,, Y, 15(Y)))

l

s(A,B) F; p(B,B,C) atom coverage

l

Q « s(A,B), p(B,B,C) =, Q <~ s(A,B)

Optimizations: Query Elimination

— atom coverage under linear TGDs can be checked in polynomial time
-> See paper.

— unigue elimination strategy (w.r.t. the final size of the rewriting)
-> see paper.

— given m = |body(p)| and n = |Z]
—> worst-case size of [Z] U [Q,X] is O((n-m)™)
—> worst-case size of Qy = <(,T5 > is O(n+m)™

Experimental Results

Size
QO RQ NY | PR | NYPTE
Ontology | Query

Q1 783 102 240 69 58

Qo 1812 103 94 52 11
A Qa 1763 104 104 55 13
Q4 7251 192 156 93 81
Qs 66068 | 624 624 71 65

Q1 5 2 2 6 5

Q2 287 148 1 1 1

U Qa 1260 224 4 8 7
Q4 5364 1628 2 6 5
Qs 0245 2060 2 11 10

Q1 6 6 6 i 7

Q2 204 160 1 3 3

s Qa 1194 480 2 5 4
Q4 1632 960 2 5 4

Qs 11487 | 2880 4 7 6

Q1 14 14 10 11 11
Q2 86 7T 57 16 16
P5X Qa 530 390 324 16 16
Q4 3,476 | 1,053 | 1,642 | 16 16
Qs 23,744 | 9,766 | 8,210 | 16 16

Discussion

— Datalog rewriting is substantially more compact than UCQ rewriting.

— Unclear whether this always leads to increase in performance.

— Extend the procedure to larger classes of TGDs
—>guarded TGDs [Cali’ et Al, PODS 09] = non FO-rewritable
—>sticky-join TGDs [Cali’ et Al, VLDB 10]

Thank you!

The Datalog* Family

Georg Thomas Andreas Andrea Giorgio
Gottlob Lukasiewicz Pieris Cali Orsi

