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The Problem

• Centralized query evaluation techniques for XML well
understood

• These techniques do not scale to large collection sizes and
heavy workloads

• Goal: use distribution to improve scalability

• Focus on end-to-end cost of query evaluation
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Distributed XML Query Evaluation: Two Scenarios

• Integrating multiple data sources
• Fragmentation is determined by existing data sources
• Need flexible fragmentation model to express this

• Distribution for performance
• Choose fragmentation to suit workload
• Can use more constrained fragmentation model
• Fragmentation specification allows for distributed query

optimization
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Fragmenting XML Collections

• Ad-hoc fragmentation

• Structure-based fragmentation
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Ad-hoc fragmentation

• Cut arbitrary edges in document tree

• Highly flexible (good for data integration)

• No explicit fragmentation specification

• Limited potential for exploiting fragmentation characteristics
for query optimization

• Not a suitable choice for this work
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Structure-based Fragmentation

• Fragmentation according to characteristics of data or schema

• Yields a fragmentation specification that can be exploited for
query optimization

• Better choice when distributing for performance
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Our Fragmentation Model

• Focus on simplicity and precise fragmentation specification

• Focus on partitioning collection (replication is orthogonal)

• Follow semantics of relational fragmentation techniques
• Horizontal fragmentation (based on predicates/selection)
• Vertical fragmentation (based on partitioning of

schema/projection)
• Hybrid fragmentation (combination of horizontal and vertical

steps)
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Vertical Fragmentation
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Vertical Fragmentation Specification

Vertical fragmentation is specified by a fragmentation schema.
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Query model

XQ, subset of XPath

• Nested paths with child and descendant steps

• Explicit node tests and wild cards

• Value constraints (numeric or textual)
• Q := σ | ∗ | Q//Q | Q/Q |Q[q]

q := Q | . = / 6= str | . = / 6= / ≤ / < / ≥ / > num
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Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”
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Tree Patterns
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Tree Patterns
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Evaluating Tree Pattern Queries
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Evaluating Tree Pattern Queries

• Various centralized approaches exist
• Navigating document trees
• Structural joins

• We leverage these for distributed query evaluation
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Querying Vertically Distributed XML Collections

• Input
• Fragmentation-unaware tree pattern query
• Fragmentation schema

• Tasks
• Annotate tree pattern nodes with corresponding fragments
• Decompose tree pattern into sub-patterns for individual

fragments
• Convert sub-patterns to local plans using existing techniques

(each site is free to choose local strategy)
• Generate distributed execution plan that specifies how results

are combined
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Querying Vertically Distributed XML Collections

• Annotate tree pattern nodes

• Decompose tree pattern

• Convert sub-patterns into local plans

• Generate distributed execution plan
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Querying Vertically Distributed XML Collections

• Annotate tree pattern nodes

• Decompose tree pattern

• Convert sub-patterns into local plans

• Generate distributed execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

19



Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

20



Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1 )

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2 )

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3 )

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4 )

20



Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1 )

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2 )

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3 )

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4 )

20



Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes
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Improving Distributed Execution Plans

• Pruning irrelevant fragments

• Join order

• Push cross-fragment joins into local plans
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Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join
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Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join
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• Idea: only access relevant sub-trees in fragment

• Avoid computing irrelevant local results

• Use pipelining to push cross-fragment join into local plan
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A Local Query Plan
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Pushing Cross-Fragment Joins
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Pushing Cross Fragment Joins: Implementation

• Can use full pipelining if both inputs to join are ordered

• Alternatively, can use index on root proxy nodes

• Full parallelism after first tuple received by local plan
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Pushing Cross Fragment Joins

• Avoids accessing large portion of sub-trees within a fragment

• Can only be fully used in left-deep plans

• Decreases flexibility (e.g., where joins are performed)

28



Label Path Filtering

• Cross-fragment join pushing works well but decreases flexibility

• Goal: find a solution that can obtain partial benefit for
scenarios where join pushing cannot be applied

• Idea: use selection instead of join to filter out some root proxy
nodes
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Label Path Filtering

• Assign to each proxy node the label path from the document
root

• Filter for label paths that are compatible with the query
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Label Path Filtering
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• Assume there are two
types of publications:
book and article

• Can use selection to
filter chapters based
on publication type

31



Label Path Filtering

• Can be used in more cases

• Retains higher degree of flexibility

• Benefit is more limited (does not filter all irrelevant root proxy
nodes)
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Determining the Best Distributed Execution Plan

• Join pushing and label path filtering are not always
advantageous

• Determine best execution plan using cost model
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Performance Evaluation

• Implemented techniques within Natix

• 12 GB XMark collection (auction data)

• 1 Amazon EC2 instance for each of each of 10 vertical
fragments
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Performance Evaluation

• XPathMark queries (with few filtering value constraints)

• Modified, more selective XPathMark queries

A1 /site/closed auctions/closed auction/annotation/description/text/keyword

A2 //closed auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 /site/closed auctions/closed auction[annotation/description/text/keyword]/date

A5 /site/closed auctions/closed auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

B7 //person[profile/@income]/name

A1S /site/closed auctions/closed auction[price > 600]/annotation/description/text/keyword

A2S //closed auction[price > 600]//keyword

A3S /site/closed auctions/closed auction[price > 600]//keyword

A4S /site/closed auctions/closed auction[price > 600][annotation/description/text/keyword]/date

A5S /site/closed auctions/closed auction[price > 600][descendant::keyword]/date

A6S /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)][profile/@income]/name
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Performance Evaluation: XPathMark
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Performance Evaluation: Selective XPathMark

 0

 200

 400

 600

 800

 1000

 1200

 1400

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Plan

cent
dist

push

38



Conclusions

• Distribution can make XML query evaluation more scalable

• Join pushing can significantly improve query performance

• A cost model is essential for finding the optimal technique for
a given query
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[1] Patrick Kling, M. Tamer Özsu, Khuzaima Daudjee: Generating
Efficient Execution Plans for Vertically Partitioned XML
Databases, PVLDB 2010.
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