
Generating Efficient Execution Plans for

Vertically Partitioned XML Databases

Patrick Kling, M. Tamer Özsu, and Khuzaima Daudjee

University of Waterloo
David R. Cheriton School of Computer Science

VLDB 2011

1

The Problem

• Centralized query evaluation techniques for XML well
understood

• These techniques do not scale to large collection sizes and
heavy workloads

• Goal: use distribution to improve scalability

• Focus on end-to-end cost of query evaluation

2

Distributed XML Query Evaluation: Two Scenarios

• Integrating multiple data sources
• Fragmentation is determined by existing data sources
• Need flexible fragmentation model to express this

• Distribution for performance
• Choose fragmentation to suit workload
• Can use more constrained fragmentation model
• Fragmentation specification allows for distributed query

optimization

3

Distributed XML Query Evaluation: Two Scenarios

• Integrating multiple data sources
• Fragmentation is determined by existing data sources
• Need flexible fragmentation model to express this

• Distribution for performance
• Choose fragmentation to suit workload
• Can use more constrained fragmentation model
• Fragmentation specification allows for distributed query

optimization

3

Outline

1 Fragmenting XML Collections

2 Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

3 Performance Evaluation

4 Conclusion

4

Outline

1 Fragmenting XML Collections

2 Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

3 Performance Evaluation

4 Conclusion

5

Fragmenting XML Collections

• Ad-hoc fragmentation

• Structure-based fragmentation

6

Ad-hoc fragmentation

• Cut arbitrary edges in document tree

• Highly flexible (good for data integration)

• No explicit fragmentation specification

• Limited potential for exploiting fragmentation characteristics
for query optimization

• Not a suitable choice for this work

7

Structure-based Fragmentation

• Fragmentation according to characteristics of data or schema

• Yields a fragmentation specification that can be exploited for
query optimization

• Better choice when distributing for performance

8

Our Fragmentation Model

• Focus on simplicity and precise fragmentation specification

• Focus on partitioning collection (replication is orthogonal)

• Follow semantics of relational fragmentation techniques
• Horizontal fragmentation (based on predicates/selection)
• Vertical fragmentation (based on partitioning of

schema/projection)
• Hybrid fragmentation (combination of horizontal and vertical

steps)

9

Our Fragmentation Model

• Focus on simplicity and precise fragmentation specification

• Focus on partitioning collection (replication is orthogonal)

• Follow semantics of relational fragmentation techniques
• Horizontal fragmentation (based on predicates/selection)
• Vertical fragmentation (based on partitioning of

schema/projection)
• Hybrid fragmentation (combination of horizontal and vertical

steps)

9

Vertical Fragmentation

author2

P1→2
13 P1→3

14

f V1

RP1→2
13

name2

first2

Jane

last2

Dean

f V2

RP1→3
14

pubs2

f V3

10

Vertical Fragmentation Specification

Vertical fragmentation is specified by a fragmentation schema.

author

agent

OPT

f V1

pubs

book

MULT

f V3

name

first

ONCE

∗

last

ONCE

∗

f V2

chapter

reference

OPT ONCE

f V4

ONCE

ONCE

ONCE

MULT

11

Outline

1 Fragmenting XML Collections

2 Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

3 Performance Evaluation

4 Conclusion

12

Query model

XQ, subset of XPath

• Nested paths with child and descendant steps

• Explicit node tests and wild cards

• Value constraints (numeric or textual)
• Q := σ | ∗ | Q//Q | Q/Q |Q[q]

q := Q | . = / 6= str | . = / 6= / ≤ / < / ≥ / > num

13

Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”

14

Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”

/author[./name[./first = “William”and

./last = “Shakespeare”]]//reference

14

Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”

/author[./name[./first = “William”and

./last = “Shakespeare”]]//reference

• Node tests

14

Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”

/author[./name[./first = “William”and

./last = “Shakespeare”]]//reference

• Node tests

• Value constraints

14

Query Example

“Find all references in publications written by authors whose first
name is ‘William’ and whose last name is ‘Shakespeare’ ”

/author[./name[./first = “William”and

./last = “Shakespeare”]]//reference

• Node tests

• Value constraints

• Structural constraints

14

Tree Patterns

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

15

Tree Patterns

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

• Pattern nodes with node
tests and value constraints

15

Tree Patterns

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

• Pattern nodes with node
tests and value constraints

15

Tree Patterns

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

• Pattern nodes with node
tests and value constraints

• Edges annotated with XPath
axes

15

Tree Patterns

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

• Pattern nodes with node
tests and value constraints

• Edges annotated with XPath
axes

• Extraction point nodes

15

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

16

Evaluating Tree Pattern Queries

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

ae1
reference

//

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

[ae1 = reference4]
16

Evaluating Tree Pattern Queries

• Various centralized approaches exist
• Navigating document trees
• Structural joins

• We leverage these for distributed query evaluation

17

Querying Vertically Distributed XML Collections

• Input
• Fragmentation-unaware tree pattern query
• Fragmentation schema

• Tasks
• Annotate tree pattern nodes with corresponding fragments
• Decompose tree pattern into sub-patterns for individual

fragments
• Convert sub-patterns to local plans using existing techniques

(each site is free to choose local strategy)
• Generate distributed execution plan that specifies how results

are combined

18

Querying Vertically Distributed XML Collections

• Annotate tree pattern nodes

• Decompose tree pattern

• Convert sub-patterns into local plans

• Generate distributed execution plan

author

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

19

Querying Vertically Distributed XML Collections

• Annotate tree pattern nodes

• Decompose tree pattern

• Convert sub-patterns into local plans

• Generate distributed execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

19

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

20

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

20

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

author f V1

name f V2

/

first
.=’William’ f V2

/

last
.=’Shakespeare’ f V2

/

reference f V4

//

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

20

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

⋊⋉id(ap3)=id(arp3)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) p21(f

V
2)

⋊⋉id(ap4)=id(arp4)

p31(f
V
3) p41(f

V
4)

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

21

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

⋊⋉id(ap3)=id(arp3)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) p21(f

V
2)

⋊⋉id(ap4)=id(arp4)

p31(f
V
3) p41(f

V
4)

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

21

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

⋊⋉id(ap3)=id(arp3)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) p21(f

V
2)

⋊⋉id(ap4)=id(arp4)

p31(f
V
3) p41(f

V
4)

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

21

Querying Vertically Distributed XML Collections

• Annotate tree pattern
nodes

• Decompose tree pattern

• Convert sub-patterns
into local plans

• Generate distributed
execution plan

⋊⋉id(ap3)=id(arp3)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) p21(f

V
2)

⋊⋉id(ap4)=id(arp4)

p31(f
V
3) p41(f

V
4)

author

a
p
2

P1→2
∗

/

a
p
3

P1→3
∗

//

q1
1(f

V
1)

a
rp
2

RP1→2
∗

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

q2
1(f

V
2)

a
rp
3

RP1→3
∗

a
p
4

P3→4
∗

//

q3
1(f

V
3)

a
rp
4

RP3→4
∗

ae1
reference

//

q4
1(f

V
4)

21

Improving Distributed Execution Plans

• Pruning irrelevant fragments

• Join order

• Push cross-fragment joins into local plans

22

Improving Distributed Execution Plans

• Pruning irrelevant fragments

• Join order

• Push cross-fragment joins into local plans

22

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

RP3→4
19

chapter2

reference2

RP3→4
20

chapter3

reference3

RP3→4
21

chapter4

reference4

f V4

23

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

RP3→4
19

chapter2

reference2

RP3→4
20

chapter3

reference3

RP3→4
21

chapter4

reference4

f V4

23

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

RP3→4
19

chapter2

reference2

RP3→4
20

chapter3

reference3

RP3→4
21

chapter4

reference4

f V4

• Idea: only access relevant sub-trees in fragment

• Avoid computing irrelevant local results

• Use pipelining to push cross-fragment join into local plan

23

A Local Query Plan

πa
rp
2

⋉a1/a3

⋉a1/a2

⋊⋉a
rp
2 /a1

scanarp2 :RP1→2
∗

scana1:name

σa2=’William’

scana2:first

σa3=’Shakespeare’

scana3:last

p2
1(f

V
2)

24

A Local Query Plan

πa
rp
2

⋉a1/a3

⋉a1/a2

⋊⋉a
rp
2 /a1

scanarp2 :RP1→2
∗

scana1:name

σa2=’William’

scana2:first

σa3=’Shakespeare’

scana3:last

p2
1(f

V
2)

• Plan scans root proxy
nodes in fragment

• Idea: filter these root
proxy nodes before
evaluating remainder
of plan

• Works for navigating
plans and plans based
on structural joins
(shown here)

24

A Local Query Plan

πa
rp
2 ,...

⋉a1/a3

⋉a1/a2

⋊⋉a
rp
2 /a1

⋊⋉

. . . scanarp2 :RP1→2
∗

scana1:name

σa2=’William’

scana2:first

σa3=’Shakespeare’

scana3:last

p2
1(f

V
2)

• Plan scans root proxy
nodes in fragment

• Idea: filter these root
proxy nodes before
evaluating remainder
of plan

• Works for navigating
plans and plans based
on structural joins
(shown here)

25

Pushing Cross-Fragment Joins

p4
′

1 (f
V
4)

⋊⋉id(ap4)=id(arp4)

p3
′

1 (f
V
3)

⋊⋉id(ap3)=id(arp3)

p2
′

1 (f
V
2)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) scanarp2 :RP1→2

∗

scanarp3 :RP1→3
∗

scanarp4 :RP3→4
∗

26

Pushing Cross-Fragment Joins

p4
′

1 (f
V
4)

⋊⋉id(ap4)=id(arp4)

p3
′

1 (f
V
3)

⋊⋉id(ap3)=id(arp3)

p2
′

1 (f
V
2)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) scanarp2 :RP1→2

∗

scanarp3 :RP1→3
∗

scanarp4 :RP3→4
∗

26

Pushing Cross-Fragment Joins

p4
′

1 (f
V
4)

⋊⋉id(ap4)=id(arp4)

p3
′

1 (f
V
3)

⋊⋉id(ap3)=id(arp3)

p2
′

1 (f
V
2)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) scanarp2 :RP1→2

∗

scanarp3 :RP1→3
∗

scanarp4 :RP3→4
∗

26

Pushing Cross-Fragment Joins

p4
′

1 (f
V
4)

⋊⋉id(ap4)=id(arp4)

p3
′

1 (f
V
3)

⋊⋉id(ap3)=id(arp3)

p2
′

1 (f
V
2)

⋊⋉id(ap2)=id(arp2)

p11(f
V
1) scanarp2 :RP1→2

∗

scanarp3 :RP1→3
∗

scanarp4 :RP3→4
∗

26

Pushing Cross Fragment Joins: Implementation

• Can use full pipelining if both inputs to join are ordered

• Alternatively, can use index on root proxy nodes

• Full parallelism after first tuple received by local plan

27

Pushing Cross Fragment Joins

• Avoids accessing large portion of sub-trees within a fragment

• Can only be fully used in left-deep plans

• Decreases flexibility (e.g., where joins are performed)

28

Label Path Filtering

• Cross-fragment join pushing works well but decreases flexibility

• Goal: find a solution that can obtain partial benefit for
scenarios where join pushing cannot be applied

• Idea: use selection instead of join to filter out some root proxy
nodes

29

Label Path Filtering

• Assign to each proxy node the label path from the document
root

• Filter for label paths that are compatible with the query

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

30

Label Path Filtering

• Assign to each proxy node the label path from the document
root

• Filter for label paths that are compatible with the query

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

chapter5

/author/pubs/book

30

Label Path Filtering

⋊⋉id(arp4)=id(ap4)

⋊⋉id(arp3)=id(ap3)

⋊⋉id(arp2)=id(ap2)

p11(f
V
1) p21 ∗ (f

V
2)

p31(f
V
3)

p4
′

1 (f
V
4)

σlabel(arp4)=/author/pubs/book

scanarp4 =(RP3→4
∗

)

• Assume there are two
types of publications:
book and article

• Can use selection to
filter chapters based
on publication type

31

Label Path Filtering

• Can be used in more cases

• Retains higher degree of flexibility

• Benefit is more limited (does not filter all irrelevant root proxy
nodes)

32

Determining the Best Distributed Execution Plan

• Join pushing and label path filtering are not always
advantageous

• Determine best execution plan using cost model

33

Outline

1 Fragmenting XML Collections

2 Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

3 Performance Evaluation

4 Conclusion

34

Performance Evaluation

• Implemented techniques within Natix

• 12 GB XMark collection (auction data)

• 1 Amazon EC2 instance for each of each of 10 vertical
fragments

35

Performance Evaluation

• XPathMark queries (with few filtering value constraints)

• Modified, more selective XPathMark queries

A1 /site/closed auctions/closed auction/annotation/description/text/keyword

A2 //closed auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 /site/closed auctions/closed auction[annotation/description/text/keyword]/date

A5 /site/closed auctions/closed auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

B7 //person[profile/@income]/name

A1S /site/closed auctions/closed auction[price > 600]/annotation/description/text/keyword

A2S //closed auction[price > 600]//keyword

A3S /site/closed auctions/closed auction[price > 600]//keyword

A4S /site/closed auctions/closed auction[price > 600][annotation/description/text/keyword]/date

A5S /site/closed auctions/closed auction[price > 600][descendant::keyword]/date

A6S /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)][profile/@income]/name

36

Performance Evaluation: XPathMark

 200

 400

 600

 800

 1000

 1200

 1400

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

cent
dist

push

37

Performance Evaluation: Selective XPathMark

 0

 200

 400

 600

 800

 1000

 1200

 1400

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

cent
dist

push

38

Conclusions

• Distribution can make XML query evaluation more scalable

• Join pushing can significantly improve query performance

• A cost model is essential for finding the optimal technique for
a given query

39

References

[1] Patrick Kling, M. Tamer Özsu, Khuzaima Daudjee: Generating
Efficient Execution Plans for Vertically Partitioned XML
Databases, PVLDB 2010.

[2] Patrick Kling, M. Tamer Özsu, Khuzaima Daudjee: Scaling
XML Query Processing: Distribution, Localization and Pruning,
DAPD 2011.

40

	Fragmenting XML Collections
	Querying Distributed XML Collections
	Query Model
	Distributed Query Evaluation
	Improving Performance

	Performance Evaluation
	Conclusion

