Generating Efficient Execution Plans for
Vertically Partitioned XML Databases

Patrick Kling, M. Tamer Ozsu, and Khuzaima Daudjee

University of Waterloo
David R. Cheriton School of Computer Science

VLDB 2011

Waterloo

&



The Problem

Centralized query evaluation techniques for XML well
understood

These techniques do not scale to large collection sizes and
heavy workloads

Goal: use distribution to improve scalability

Focus on end-to-end cost of query evaluation
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Distributed XML Query Evaluation: Two Scenarios

e Integrating multiple data sources

e Fragmentation is determined by existing data sources
¢ Need flexible fragmentation model to express this

e Distribution for performance

e Choose fragmentation to suit workload

e Can use more constrained fragmentation model

e Fragmentation specification allows for distributed query
optimization
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Fragmenting XML Collections

e Ad-hoc fragmentation

e Structure-based fragmentation
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Ad-hoc fragmentation

Cut arbitrary edges in document tree

Highly flexible (good for data integration)

No explicit fragmentation specification

Limited potential for exploiting fragmentation characteristics
for query optimization

Not a suitable choice for this work
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Structure-based Fragmentation

e Fragmentation according to characteristics of data or schema
e Yields a fragmentation specification that can be exploited for
query optimization

e Better choice when distributing for performance
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Our Fragmentation Model

e Focus on simplicity and precise fragmentation specification

e Focus on partitioning collection (replication is orthogonal)
e Follow semantics of relational fragmentation techniques
o Horizontal fragmentation (based on predicates/selection)
e Vertical fragmentation (based on partitioning of

schema/projection)
e Hybrid fragmentation (combination of horizontal and vertical

steps)
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Vertical Fragmentation
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Vertical Fragmentation Specification

Vertical fragmentation is specified by a fragmentation schema.
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Query model

XQ), subset of XPath

e Nested paths with child and descendant steps
e Explicit node tests and wild cards
e Value constraints (numeric or textual)
°* Q:=o0|x|Q/QIQ/Q|Q[d]
gi=Q|. =/#str|. =/#/</</Z=/> num
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Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

Waterloo
H_g‘

14 &



Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

/author[./name[. /first = “William" and
./last = “Shakespeare"]]//reference
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Query Example
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Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

h p “William” and ® Node tests
/author[./name[. /first = “William” an e Value constraints

./last = “Shakespeare"]]//reference e Structural constraints
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Tree Patterns

author

/ //
I name I I reference l
/ /
’ first ] [ last l
.="William’ .='Shakespeare’
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Tree Patterns

author

e Pattern nodes with node
tests and value constraints

/ //
I name I I reference l
/ /
’ first ] [ last l
.="William’ .='Shakespeare’

15
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Tree Patterns

e Pattern nodes with node

___author tests and value constraints

/ // e Edges annotated with XPath

I name I I reference l axes

/ /

first last
.="William’ .='Shakespeare’
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Tree Patterns

e Pattern nodes with node

___author tests and value constraints

/ // e Edges annotated with XPath
I name I I reference l axes
/ / e Extraction point nodes
’ flI‘St ] [ i last . l
.="William’ .='Shakespeare
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Evaluating Tree Pattern Queries
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Evaluating Tree Pattern Queries

author
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’ name ae reference l
1
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Evaluating Tree Pattern Queries

e Various centralized approaches exist
e Navigating document trees
e Structural joins

e We leverage these for distributed query evaluation
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Querying Vertically Distributed XML Collections

e Input
o Fragmentation-unaware tree pattern query
e Fragmentation schema

e Tasks

e Annotate tree pattern nodes with corresponding fragments

e Decompose tree pattern into sub-patterns for individual
fragments

o Convert sub-patterns to local plans using existing techniques
(each site is free to choose local strategy)

o Generate distributed execution plan that specifies how results
are combined
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Querying Vertically Distributed XML Collections

Annotate tree pattern nodes

e Decompose tree pattern

Convert sub-patterns into local plans

Generate distributed execution plan

author
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Querying Vertically Distributed XML Collections

Annotate tree pattern nodes

e Decompose tree pattern

Convert sub-patterns into local plans

Generate distributed execution plan
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Querying Vertically Distributed XML Collections

Annotate tree pattern
nodes

Decompose tree pattern

Convert sub-patterns
into local plans

Generate distributed

executior p|al
O Vv
author f,

E

/o i
’ __name l f2V I reference
/ /
first ] £V [ last ‘ £V
.='William’ 2 .="Shakespeare’ 2
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Querying Vertically Distributed XML Collections

e Annotate tree pattern ’— author |
nodes

/ //
=]

e Decompose tree pattern 2
3

e Convert sub-patterns ()
into local plans

s ; RPI2
e Generate distributed a

execution plan /
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Querying Vertically Distributed XML Collections

e Annotate tree pattern author

nodes

e Decompose tree pattern . P13

|

e Convert sub-patterns
into local plans

e Generate distributed
execution plan

y 7/ I first I [ last

="Willlam’ ='Shakespeare’
’ __name l f2V I reference l £v
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’ first last ‘ f—\;’
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Querying Vertically Distributed XML Collections

e Annotate tree pattern

author

nodes y 7
e Decompose tree pattern » p1-+2 » p1-3 "
2 3
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
/ /
(—Hme—] = |
Mid(a)=id(a}) (£
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Querying Vertically Distributed XML Collections

e Annotate tree pattern

author

nodes y 7
e Decompose tree pattern 2 pL2 * p1-3 "
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
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Improving Distributed Execution Plans

e Pruning irrelevant fragments
e Join order

e Push cross-fragment joins into local plans
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Improving Distributed Execution Plans
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Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

I \
I I
I I
I I
: ( chapter, ) ( chaptery ) ( chapter, ) :
| |
I I

/

\\Creferenceg) (reference3> (reference4> .

Waterloo

&

23



Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join
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Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join
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e Idea: only access relevant sub-trees in fragment
e Avoid computing irrelevant local results

e Use pipelining to push cross-fragment join into local plan
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A Local Query Plan

T P
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A Local Query Plan

e Plan scans root proxy

Tap nodes in fragment
x | e |dea: filter these root

- /2 proxy nodes before
X oy /a O o Shakespeare’ evaluating remainder

s o | of plan
Maf /o Oa=Wiliam' SCaN;:1ast o Works for navigating
N | plans and plans based
sCan r.pp1—2  SCaNy,- SCaNng,,.fi H
2 R "’l‘namez(fv) #ifirst on structural joins
pill2

(shown here)
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A Local Query Plan
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e Plan scans root proxy
nodes in fragment

e |dea: filter these root
proxy nodes before
evaluating remainder
of plan

e Works for navigating
plans and plans based
on structural joins
(shown here)
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Pushing Cross-Fragment Joins
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Pushing Cross-Fragment Joins
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Pushing Cross-Fragment Joins
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Pushing Cross-Fragment Joins
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Pushing Cross Fragment Joins: Implementation

e Can use full pipelining if both inputs to join are ordered
e Alternatively, can use index on root proxy nodes

e Full parallelism after first tuple received by local plan
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Pushing Cross Fragment Joins

e Avoids accessing large portion of sub-trees within a fragment
e Can only be fully used in left-deep plans

o Decreases flexibility (e.g., where joins are performed)
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Label Path Filtering

e Cross-fragment join pushing works well but decreases flexibility

e Goal: find a solution that can obtain partial benefit for
scenarios where join pushing cannot be applied

e |dea: use selection instead of join to filter out some root proxy
nodes
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Label Path Filtering

e Assign to each proxy node the label path from the document
root

o Filter for label paths that are compatible with the query
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Label Path Filtering

e Assign to each proxy node the label path from the document
root

e Filter for label paths that are compatible with the query

( firsty ) (
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_____________________

/author / pubs / book
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Label Path Filtering

Mid(af)=id(a?) Pt (£))
D<]id(a;"):id(a;) p%(fév) Olabel(a?)=/author /pubs /book
pi(FY)  pt* (£) SCanyp—(rei-)

31

e Assume there are two
types of publications:
book and article

e Can use selection to
filter chapters based
on publication type
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Label Path Filtering

e Can be used in more cases
e Retains higher degree of flexibility

e Benefit is more limited (does not filter all irrelevant root proxy
nodes)
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Determining the Best Distributed Execution Plan

e Join pushing and label path filtering are not always
advantageous

e Determine best execution plan using cost model
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Outline

Performance Evaluation
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Performance Evaluation

e Implemented techniques within Natix
e 12 GB XMark collection (auction data)

e 1 Amazon EC2 instance for each of each of 10 vertical
fragments
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Performance Evaluation

o XPathMark queries (with few filtering value constraints)

e Modified, more selective XPathMark queries

Al | /site/closed auctions/closed auction/annotation/description/text/keyword

A2 | //closed_auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 | /site/closed auctions/closed auction[annotation/description/text/keyword]/date

Ab | /site/closed auctions/closed auction[descendant: :keyword] /date

A6 /site/people/person[profile/gender and profile/agel/name

B7 //person[profile/@income] /name

A1S | /site/closed auctions/closed auction [price > 600]/annotation/description/text/keyword

A2S | //closed auction[price > 600]//keyword

A3S /site/closed_auctions/closed_auction[price > 600]//keyword

A4S | /site/closed_auctions/closed_auction[price > 600] [annotation/description/text/keyword]/date

A5S /site/closed_auctions/closed_auction[price > 600] [descendant: :keyword]/date

A6S /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)] [profile/@income] /name

Waterloo
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Performance Evaluation

Response time (seconds)
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Performance Evaluation: Selective XPathMark

Response time (seconds)
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Conclusions

e Distribution can make XML query evaluation more scalable
e Join pushing can significantly improve query performance

e A cost model is essential for finding the optimal technique for
a given query
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