Generating Efficient Execution Plans for
Vertically Partitioned XML Databases

Patrick Kling, M. Tamer Ozsu, and Khuzaima Daudjee

University of Waterloo
David R. Cheriton School of Computer Science

VLDB 2011

Waterloo

&

The Problem

Centralized query evaluation techniques for XML well
understood

These techniques do not scale to large collection sizes and
heavy workloads

Goal: use distribution to improve scalability

Focus on end-to-end cost of query evaluation

Waterloo
H_g‘

©

Distributed XML Query Evaluation: Two Scenarios

e Integrating multiple data sources

e Fragmentation is determined by existing data sources
¢ Need flexible fragmentation model to express this

e Distribution for performance

e Choose fragmentation to suit workload

e Can use more constrained fragmentation model

e Fragmentation specification allows for distributed query
optimization

Waterloo

&

Distributed XML Query Evaluation: Two Scenarios

e Integrating multiple data sources

e Fragmentation is determined by existing data sources
o Need flexible fragmentation model to express this

e Distribution for performance

e Choose fragmentation to suit workload

e Can use more constrained fragmentation model

e Fragmentation specification allows for distributed query
optimization

Waterloo

&

Outline

Fragmenting XML Collections

Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

Performance Evaluation

Conclusion

Waterloo

¢ @

Outline

Fragmenting XML Collections

Waterloo
33

Fragmenting XML Collections

e Ad-hoc fragmentation

e Structure-based fragmentation

Waterloo

o @

Ad-hoc fragmentation

Cut arbitrary edges in document tree

Highly flexible (good for data integration)

No explicit fragmentation specification

Limited potential for exploiting fragmentation characteristics
for query optimization

Not a suitable choice for this work

Waterloo
H_g‘

©

Structure-based Fragmentation

e Fragmentation according to characteristics of data or schema
e Yields a fragmentation specification that can be exploited for
query optimization

e Better choice when distributing for performance

Waterloo
H_g‘

8 @

Our Fragmentation Model

e Focus on simplicity and precise fragmentation specification

e Focus on partitioning collection (replication is orthogonal)
e Follow semantics of relational fragmentation techniques
o Horizontal fragmentation (based on predicates/selection)
e Vertical fragmentation (based on partitioning of

schema/projection)
e Hybrid fragmentation (combination of horizontal and vertical

steps)

Waterloo
H_g‘

° @

Our Fragmentation Model

e Focus on simplicity and precise fragmentation specification

e Focus on partitioning collection (replication is orthogonal)
e Follow semantics of relational fragmentation techniques
e Horizontal fragmentation (based on predicates/selection)
o Vertical fragmentation (based on partitioning of
schema/projection)
e Hybrid fragmentation (combination of horizontal and vertical
steps)

Waterloo

° @

Vertical Fragmentation

—_—— e e o — — — — o —— —

[|
! |
|
|
I
' name, |
| ——
| : féV
|
|
|
. (_firsty) (_ lasty):
|
I l :
Voo Lo __ SR
\(__Jane) {_Dean_)/
g Wéﬁféo
33

10 5
©

Vertical Fragmentation Specification

Vertical fragmentation is specified by a fragmentation schema.

[
[
ONCE
[

ﬂV

Waterloo
11 X3

Outline

Querying Distributed XML Collections
Query Model
Distributed Query Evaluation
Improving Performance

12

Waterloo

&

Query model

XQ), subset of XPath

e Nested paths with child and descendant steps
e Explicit node tests and wild cards
e Value constraints (numeric or textual)
°* Q:=o0|x|Q/QIQ/Q|Q[d]
gi=Q|. =/#str|. =/#/</</Z=/> num

Waterloo
H_g‘

©

13

Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

Waterloo
H_g‘

14 &

Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

/author[./name[. /first = “William" and
./last = “Shakespeare"]]//reference

Waterloo
H_g‘

14 &

Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

) e Node tests
/author[./name[./first = “William" and

./last = “Shakespeare"]]//reference

Waterloo

14 g
&

Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

e Node tests
/author[./name[. /first = “William”and

./last = “Shakespeare”]]//reference

e Value constraints

Waterloo

14 g
&

Query Example

“Find all references in publications written by authors whose first
name is ‘William' and whose last name is ‘Shakespeare’ "

h p “William” and ® Node tests
/author[./name[. /first = “William” an e Value constraints

./last = “Shakespeare"]]//reference e Structural constraints

Waterloo

14 5
©

Tree Patterns

author

/ //
I name I I reference l
/ /
’ first] [last l
.="William’ .='Shakespeare’

Waterloo
By

15 5
©

Tree Patterns

author

e Pattern nodes with node
tests and value constraints

/ //
I name I I reference l
/ /
’ first] [last l
.="William’ .='Shakespeare’

15

Waterloo
33

Tree Patterns

author

e Pattern nodes with node
tests and value constraints

/ //
I name I I reference l
/ /
’ first] [last l
.="William’ .="Shakespeare’

15

Waterloo
33

Tree Patterns

e Pattern nodes with node

___author tests and value constraints

/ // e Edges annotated with XPath

I name I I reference l axes

/ /

first last
.="William’ .='Shakespeare’

Waterloo
15 X3

Tree Patterns

e Pattern nodes with node

___author tests and value constraints

/ // e Edges annotated with XPath
I name I I reference l axes
/ / e Extraction point nodes
’ flI‘St] [i last . l
.="William’ .='Shakespeare

Waterloo
33
15 &

Evaluating Tree Pattern Queries

author

/ //
’ name e reference |
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
By

16 5
©

Evaluating Tree Pattern Queries

author

/ //
’ name e reference |
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name 3¢ reference |
1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name e reference |
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name e reference |
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name e reference |
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //

n
’ ame a

reference |

l first/ l [/last l

.='William’ ="Shakespeare’

——— e o _____

referencey

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name e reference l
a1
/ /
’ first l [last l
.='William’ .="Shakespeare’

(firsty) (
L

——— e o ______

Waterloo
16 E%]

Evaluating Tree Pattern Queries

author

/ //
’ name ae reference l
1
/ /
’ first l [last l
.='William’ .='Shakespeare’

referencey

[a§ = references]
Waterloo
16 By

Evaluating Tree Pattern Queries

e Various centralized approaches exist
e Navigating document trees
e Structural joins

e We leverage these for distributed query evaluation

Waterloo

17 3
©

Querying Vertically Distributed XML Collections

e Input
o Fragmentation-unaware tree pattern query
e Fragmentation schema

e Tasks

e Annotate tree pattern nodes with corresponding fragments

e Decompose tree pattern into sub-patterns for individual
fragments

o Convert sub-patterns to local plans using existing techniques
(each site is free to choose local strategy)

o Generate distributed execution plan that specifies how results
are combined

Waterloo

&

18

Querying Vertically Distributed XML Collections

Annotate tree pattern nodes

e Decompose tree pattern

Convert sub-patterns into local plans

Generate distributed execution plan

author

/ //
’ name I I reference
/ /
’ first l [last]
='William’ .='Shakespeare’

19

Waterloo
By

&

Querying Vertically Distributed XML Collections

Annotate tree pattern nodes

e Decompose tree pattern

Convert sub-patterns into local plans

Generate distributed execution plan

author flv

/ //
I name l f2v I reference
/ /
’ first l % [last l £V
='William’ 2 .='Shakespeare’ 2

19

Waterloo
By

&

Querying Vertically Distributed XML Collections

Annotate tree pattern
nodes

Decompose tree pattern

Convert sub-patterns
into local plans

Generate distributed

executior p|al
O Vv
author f,

E

/o i
’ __name l f2V I reference
/ /
first] £V [last ‘ £V
.='William’ 2 .="Shakespeare’ 2

20

Waterloo
Y

&

Querying Vertically Distributed XML Collections

e Annotate tree pattern ’— author |
nodes

/ //
=]

e Decompose tree pattern 2
3

e Convert sub-patterns ()
into local plans

s ; RPI2
e Generate distributed a

execution plan /
name
- B I first I [last]
/ /) ="Willlam’ —"Shakespeare’
- = 2(fV)
’ name l £v I reference £v aitn;
2 4
/ / » RP13 ” » RP3 ”
a * 34 - " x 0
first fa% last fs\/
.='William’ 2 .="Shakespeare’ 2 | // | //
& p3—4 ” a¢ || reference “
4V
a(£Y) ai(fs)
Waterloo
20 By

&

Querying Vertically Distributed XML Collections

e Annotate tree pattern author

nodes

e Decompose tree pattern . P13

|

e Convert sub-patterns
into local plans

e Generate distributed
execution plan

y 7/ I first I [last

="Willlam’ ='Shakespeare’
’ __name l f2V I reference l £v
4

/ / P RP13
’ first last ‘ f—\;’
2

fV
.='William’ 2 .='Shakespeare’

Waterloo
By

&

Querying Vertically Distributed XML Collections

e Annotate tree pattern

author

nodes y 7
e Decompose tree pattern » p1-+2 » p1-3 "
2 3
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
/ /
(—Hme—] = |
Mid(a)=id(a}) (£
Mid(a2)=id(a}) Mid(a?)=id(alP) " RP13 ” P RP3=4 ”
1 £V \2 v 3(£V \4 L// L/
pi(f) pi(R) pi(B7) pi(f)aﬁ p3— " 2 M“
@ (R) qi(f")

Waterloo
21 X3

Querying Vertically Distributed XML Collections

e Annotate tree pattern ’— author |
nodes

/ //
e Decompose tree pattern » p1-+2 » p1-3 "
2 3
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
/ /
(—Hme—] = |
Mid(a)=id(a}) (£
Mid(a)=id(af) Mid(af)=id(aP) 7 RP13 " e RP3 ”
£V \2 v 3(£V \4 % L// L/
pi(R7) pi(RT) pi(RT) pi(f) L[e | [t
@ (R) qi(f)
Waterloo
21 By

&

Querying Vertically Distributed XML Collections

e Annotate tree pattern ’— author |
nodes

/ //
e Decompose tree pattern » p1-+2 » p1-3 "
2 3
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
/ /
(—Hme—] = |
Mid(a)=id(a}) (£
Mid(a5)=id(a?) Mid(af)=id(af) p| __RPL ” o ”
£V \2 v 3(£V \4 1% L// L/
P piB) PHE) AW T][]
@ (R) qi(f’)
Waterloo
21 By

&

Querying Vertically Distributed XML Collections

e Annotate tree pattern

author

nodes y 7
e Decompose tree pattern 2 pL2 * p1-3 "
e Convert sub-patterns
into local plans
e Generate distributed
execution plan
/ /
(—Hme—] = |
Mid(a5)=id(a’ @ (f)
Nld(ag):idg >id(af):|d(a£”) a RP13 ” P RP3=4 ”
£V \2 v 3(£V \4 L// L/
pi(R7) pi(RT) pi(RT) pi(f) L[e | [t
@ (R) qi(f’)
" Wagirloo

Improving Distributed Execution Plans

e Pruning irrelevant fragments
e Join order

e Push cross-fragment joins into local plans

Waterloo

22 5
©

Improving Distributed Execution Plans

e Pruning irrelevant fragments
e Join order

e Push cross-fragment joins into local plans

Waterloo

22 %ﬂ

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

I \
I I
I I
I I
: (chapter,) (chaptery) (chapter,) :
| |
I I

/

\\Creferenceg) (reference3> (reference4> .

Waterloo

&

23

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

7
o
5
ie]
ot
®
s
N
-/
7
o
=3
)
ol
ot
o
H
w
-/
7
0
=g
o
ol
ot
o
R
~
-/

Waterloo
By

&

23

Pushing Cross-Fragment Joins

Large fraction of local results are discarded by cross-fragment join

N\
e
5
e
ct
o)
a]
N
/
N\
a
=
)
o}
o+
®
=
w
/
N\
o
=
o
o}
e
®
al
~
/

e Idea: only access relevant sub-trees in fragment
e Avoid computing irrelevant local results

e Use pipelining to push cross-fragment join into local plan

Waterloo

&

23

A Local Query Plan

T P
a

D<=’f71/«2?3

O

X a1/a O a3="Shakespeare’

MNP /a O a,="William' SCaNgs;:1ast

N\ |

sc"‘“’]a;p:F\’P,}ﬁz SCaN, name SCaANg,:first
20V
pi(f")

24

Waterloo
By

&

A Local Query Plan

e Plan scans root proxy

Tap nodes in fragment
x | e |dea: filter these root

- /2 proxy nodes before
X oy /a O o Shakespeare’ evaluating remainder

s o | of plan
Maf /o Oa=Wiliam' SCaN;:1ast o Works for navigating
N | plans and plans based
sCan r.pp1—2 SCaNy,- SCaNng,,.fi H
2 R "’l‘namez(fv) #ifirst on structural joins
pill2

(shown here)

Waterloo

24 5
©

A Local Query Plan

T 4P
ay ...

D<‘;11/;,)3

N

X a1/a O a3="Shakespeare’

N

af Ja O a,='William' SCaNga;:1ast
Scanal name Scanaz:first

/.

Scanaép:RP}ﬂz oy
pi(f2")

25

e Plan scans root proxy
nodes in fragment

e |dea: filter these root
proxy nodes before
evaluating remainder
of plan

e Works for navigating
plans and plans based
on structural joins
(shown here)

Waterloo
By

%

Pushing Cross-Fragment Joins

pi"(lﬁv)
Mid(af)=id(a})
/

pfl (f V) scan . rp3—

1(¢£V 17
pi (f;l) SCa naZP:Rpiﬁz

26

Waterloo

&

Pushing Cross-Fragment Joins

pi"(lﬁv)
Mid(af)=id(a})
/

pfl (f V) scan . rp3—

Mid(a8)=id(a?)

7/ N\

1(fV can.m».
pi(fy") SCaNar:rpi

26

Waterloo
33

Pushing Cross-Fragment Joins

]
=
—
wh
<
~—
0n
O
o
=]
NS
B
X
o)
*Q
1
X

1V 17
pi (fl) SCa nazlJ:Rpi—Q

26

Waterloo
33

Pushing Cross-Fragment Joins

pr (|f4‘/)
Mid(af)=id(a)
e
pi’) (f3V) scanagp:RPEM
|
Mid(a8)=id(af)
7

p% (lf2\/) Scanagp:RP}%3

Mid(a8)=id(a?)

7\

1V 17
pi (fl) SCa nazlJ:Rpi—Q

26

Waterloo
33

Pushing Cross Fragment Joins: Implementation

e Can use full pipelining if both inputs to join are ordered
e Alternatively, can use index on root proxy nodes

e Full parallelism after first tuple received by local plan

Waterloo
H_g‘

27 &

Pushing Cross Fragment Joins

e Avoids accessing large portion of sub-trees within a fragment
e Can only be fully used in left-deep plans

o Decreases flexibility (e.g., where joins are performed)

Waterloo
H_g‘

28 &

Label Path Filtering

e Cross-fragment join pushing works well but decreases flexibility

e Goal: find a solution that can obtain partial benefit for
scenarios where join pushing cannot be applied

e |dea: use selection instead of join to filter out some root proxy
nodes

Waterloo
H_g‘

©

29

Label Path Filtering

e Assign to each proxy node the label path from the document
root

o Filter for label paths that are compatible with the query

—— e e — N ___

referencey

Waterloo
By

30 XX
©

Label Path Filtering

e Assign to each proxy node the label path from the document
root

e Filter for label paths that are compatible with the query

(firsty) (
[

/author / pubs / book

Waterloo

30 5
©

Label Path Filtering

Mid(af)=id(a?) Pt (£))
D<]id(a;"):id(a;) p%(fév) Olabel(a?)=/author /pubs /book
pi(FY) pt* (£) SCanyp—(rei-)

31

e Assume there are two
types of publications:
book and article

e Can use selection to
filter chapters based
on publication type

Waterloo

&

Label Path Filtering

e Can be used in more cases
e Retains higher degree of flexibility

e Benefit is more limited (does not filter all irrelevant root proxy
nodes)

Waterloo

&

32

Determining the Best Distributed Execution Plan

e Join pushing and label path filtering are not always
advantageous

e Determine best execution plan using cost model

Waterloo

33 5
©

Outline

Performance Evaluation

Waterloo
34 33

Performance Evaluation

e Implemented techniques within Natix
e 12 GB XMark collection (auction data)

e 1 Amazon EC2 instance for each of each of 10 vertical
fragments

Waterloo
H_g‘

35 &

Performance Evaluation

o XPathMark queries (with few filtering value constraints)

e Modified, more selective XPathMark queries

Al | /site/closed auctions/closed auction/annotation/description/text/keyword

A2 | //closed_auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 | /site/closed auctions/closed auction[annotation/description/text/keyword]/date

Ab | /site/closed auctions/closed auction[descendant: :keyword] /date

A6 /site/people/person[profile/gender and profile/agel/name

B7 //person[profile/@income] /name

A1S | /site/closed auctions/closed auction [price > 600]/annotation/description/text/keyword

A2S | //closed auction[price > 600]//keyword

A3S /site/closed_auctions/closed_auction[price > 600]//keyword

A4S | /site/closed_auctions/closed_auction[price > 600] [annotation/description/text/keyword]/date

A5S /site/closed_auctions/closed_auction[price > 600] [descendant: :keyword]/date

A6S /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)] [profile/@income] /name

Waterloo

36 @‘

Performance Evaluation

Response time (seconds)

1400

1200

1000

800

600

400

200

- XPathMark

cent ——J
dist
push m—

Al

A2

A3 A4 A5 A6 B7
Plan

37

Waterloo
/g_g‘

&

Performance Evaluation: Selective XPathMark

Response time (seconds)

1400
1200
1000
800
600
400
200
0

cent 1 M
i dist
push m—
- N N L
N |
Al A2 A3 A4 A5 A6 BY

Plan

38

Waterloo
/g_g‘

&

Conclusions

e Distribution can make XML query evaluation more scalable
e Join pushing can significantly improve query performance

e A cost model is essential for finding the optimal technique for
a given query

Waterloo
H_g‘

39 &

References

[1] Patrick Kling, M. Tamer Ozsu, Khuzaima Daudjee: Generating
Efficient Execution Plans for Vertically Partitioned XML
Databases, PVLDB 2010.

[2] Patrick Kling, M. Tamer Ozsu, Khuzaima Daudjee: Scaling
XML Query Processing: Distribution, Localization and Pruning,
DAPD 2011.

Waterloo
/g_g‘

40 &

	Fragmenting XML Collections
	Querying Distributed XML Collections
	Query Model
	Distributed Query Evaluation
	Improving Performance

	Performance Evaluation
	Conclusion

