ZINC: Efficient Indexing for Skyline Computation

Bin Liu, Chee-Yong Chan
Department of Computer Science, National University of Singapore
Skyline Queries

- **Skyline** – points that are not dominated by other points wrt a set of dimensions

- Point x *dominates* point y if
 1. x is as good as y in all dimensions, and
 2. x is better than y in at least one dimension

- **Example**: Find used cars that are cheap and have low mileage
Skyline Queries

- **Skyline** – points that are not dominated by other points wrt a set of dimensions

- Point x **dominates** point y if
 1. x is as good as y in all dimensions, and
 2. x is better than y in at least one dimension

- **Example**: Find used cars that are cheap and have low mileage
Simple Evaluation Algorithm

Input: set of data points P

Output: set of skyline points in P

initialize set of candidate skyline points S to be empty

for each data point p in P do
 if (p is not dominated by any point in S) then
 delete each $s \in S$ if p dominates s
 insert p into S

return S
Simple Evaluation Algorithm

Input: set of data points \(P \)

Output: set of skyline points in \(P \)

initialize set of candidate skyline points \(S \) to be empty

for each data point \(p \) in \(P \) do
 if \(p \) is not dominated by any point in \(S \) then
 delete each \(s \in S \) if \(p \) dominates \(s \)
 insert \(p \) into \(S \)
return \(S \)

Drawbacks:

- Need to scan entire data set
- Performs many dominance comparisons
- Non-progressive
Processing Skyline Queries

- **Scan-based solutions:**
 - **BNL, D&C** [Börzsönyi, Kossmann, Stocker, ICDE’01]
 - **SFS** [Chomicki, Godfrey, Gryz, Liang, ICDE’03]
 - **LESS** [Godfrey, Shipley, Gryz, VLDB’05]
 - **LS** [Morse, Patel, Jagadish, VLDB’07]

- **Index-based solutions:**
 - **Bitmap, Index** [Tan, Eng, Ooi, VLDB’01]
 - **NN** [Kossmann, Ramsak, Rost, VLDB’02]
 - **BBS** [Papadias, Tao, Fu, Seeger, SIGMOD’03]
 - **ZB-tree** [Lee, Zheng, Li, Lee, VLDB’07]
 - **OPS, LCRS** [Zhang, Mamoulis, Cheung, SIGMOD’09]
 - **BSkyTree** [Lee, Hwang, EDBT’10]
Many data have partially-ordered domains:

- User preferences
- Interval data (e.g., availability period, price range)
- Type/class hierarchies (e.g., categorical data)
- Set-valued domains (e.g., skill sets, hotel facilities)
Our Work: ZINC

- Index method for skyline queries with PO domains
- Inspired by ZB-tree
- ZB-tree [Lee, Zheng, Li, Lee, VLDB’07]
 - Index method for totally-ordered domains
 - Outperforms BBS [Papadias, Tao, Fu, Seeger, SIGMOD’03]
Our Work: ZINC

- Index method for skyline queries with PO domains
- Inspired by ZB-tree
- **ZB-tree** [Lee, Zheng, Li, Lee, VLDB’07]
 - Index method for totally-ordered domains
 - Outperforms BBS [Papadias, Tao, Fu, Seeger, SIGMOD’03]
- Related work
 - **SDC**⁺ [Chan, Eng, Tan, SIGMOD’05]
 - **TSS** [Sacharidis, Papadopoulos, Papadias, ICDE’09]
Our Work: ZINC

- Index method for skyline queries with PO domains
- Inspired by ZB-tree
- **ZB-tree** [Lee, Zheng, Li, Lee, VLDB’07]
 - Index method for totally-ordered domains
 - Outperforms BBS [Papadias, Tao, Fu, Seeger, SIGMOD’03]

- Related work
 - **SDC** [Chan, Eng, Tan, SIGMOD’05]
 - **TSS** [Sacharidis, Papadopoulos, Papadias, ICDE’09]
 - Recent technique:
 - **CPS, SCL** [Zhang, Mamoulis, Cheung, Kao, VLDB’10]
ZB-tree

- Maps multi-dimensional data point to 1-dimensional Z-address
 - Z-address = Interleaved bitstring representation of attribute values
 - Example: (0,5) = (000,101) → 010001
- Index Z-addresses using B⁺-tree
ZB-tree: Example
ZB-tree: Example
ZB-tree: Example

Monotonic ordering property: if p dominates q, then p precedes q in Z-order
ZB-tree: Example

VLDB 2011
Given a partial order domain D, find the smallest set S and an embedding $f : D \rightarrow 2^S$ such that x dominates y iff $f(x) \subseteq f(y)$

Many proposed heuristics:

- Ait-Kaci et al, ACM TOPLS 1989
- Caseau, OOPSLA 1993
- Krall, Vitek, Horspool, ECOOP 1997
- etc
ZINC: Nested Encoding Scheme

- **ZINC** = Z-order Indexing with Nested Code
- **Key idea:**
 - Organize PO into nested layers of simpler POs
 - Encode each value in PO as a concatenation of encodings in simpler POs
Example of Partial Order Reduction

G_0
Example of Partial Order Reduction

\[G_0 \]

\[R_1 \]

\[R_2 \]
Example of Partial Order Reduction

A subset of nodes R in PO is a region if every node in R has the same dominance relationship wrt nodes outside of R

- if $u \in R$ dominates $v \notin R$, then every $u' \in R$ dominates v
- if $v \notin R$ dominates $u \in R$, then v dominates every $u' \in R$
Example of Partial Order Reduction

\[G_0 \]

\[G_1 \]
Example of Partial Order Reduction

\[G_0 \]

\[G_1 \]

\[R_1 \]

\[R_2 \]

\[R_3 \]

VLDB 2011
Example of Partial Order Reduction

G_0

G_1

G_2
Example of Nested Encodings

\[
\begin{align*}
\text{Encode}(a, G_0) &= \text{Encode}(a, G_2) \\
\text{Encode}(h, G_0) &= \text{Encode}(v_3, G_2) + \text{Encode}(h, R_3) \\
\text{Encode}(k, G_0) &= \text{Encode}(v_3, G_2) + \text{Encode}(v_2, R_3) + \text{Encode}(k, R_2)
\end{align*}
\]
Vertical Regions

A region R in a PO a vertical region if

- $R = S_0 \cup \cdots \cup S_k$, $k \geq 1$, each S_i is a total order,
- nodes from different total orders are incomparable
- R is maximal subgraph of PO that satisfies the above properties

\[R = S_0 \cup S_1 \]
\[S_0 = \{c, d\}, \quad S_1 = \{e, f\} \]

Each $v \in R$ is encoded by two components: (1) which S_i contains v, and (2) rank of v within S_i

\[c = 00, \quad d = 01, \quad e = 10, \quad f = 11 \]
Horizontal Regions

A region R in a PO is a horizontal region if

- $R = S_0 \cup \cdots \cup S_k$, $k \geq 1$,
- the nodes within each S_i are incomparable,
- $u \in S_i$ dominates $v \in S_j$ if $i < j$, and
- R is maximal subgraph of PO that satisfies the above properties

$$R = S_0 \cup S_1$$
$$S_0 = \{k, l\}, \quad S_1 = \{m, n\}$$

Each $v \in R$ is encoded by i if $v \in S_i$

$k = 0$, $l = 0$, $m = 1$, $n = 1$
A region R in a PO is a **regular region** if R is either a vertical or horizontal region.

A region R in a PO is an **irregular region** if:

- R is not a regular region, and
- R is a minimal subgraph of PO containing at least two nodes.

Example of an irregular region:

![Diagram of irregular region]

- Irregular regions are encoded using **Compact Hierarchical Encoding (CHE)** [Caseau, OOPSLA 1993]
Putting everything together

Encode\((a, G_0)\) = Encode\((a, G_2)\) = 00 00000
Encode\((h, G_0)\) = Encode\((v_3, G_2)\) + Encode\((h, R_3)\) = 01 011 00
Encode\((k, G_0)\) = Encode\((v_3, G_2)\) + Encode\((v_2, R_3)\) + Encode\((k, R_2)\) = 01 110 0 0

VLDB 2011
Performance Comparison

![Graph showing performance comparison](image_url)

- TSS
- TSS+ZB
- CHE+ZB
- ZINC

Processing time (sec)

(2,1) (3,1) (4,1) (2,2) (3,2) (4,2)

(|TO|, |PO|)

VLDB 2011
Conclusion

- Presented a novel index method for computing skyline queries on data with partially-ordered attribute domains
- ZINC = Z-order based indexing (ZB-tree) + Nested encoding scheme
- Future work:
 - ZINC vs CPS, SCL [Zhang, Mamoulis, Cheung, Kao, VLDB’10]
 - Other techniques?