
Keyword Search on
Form Results

 Aditya Ramesh (Stanford)*

S Sudarshan (IIT Bombay)
 Purva Joshi (IIT Bombay)

*Work done at IIT Bombay

VLDB 2011
Thursday, September 1, 2011

2

Keyword Search on Structured Data

 Allows queries to be specified without any knowledge of
schema

 Lots of papers over the past 13 years
 Tree as answers, Entities/virtual documents as answers,

ranking, efficient search
 But why has adoption in the real world remained elusive?

 Answers are not an a human usable form
 Users forced to navigate through schema in the answers

Thursday, September 1, 2011

3

Search on Enterprise Web
Applications
 Users interact with data through applications

 Applications hide complexities of underlying schema
 And present information in a human friendly fashion

 Applications have large numbers of forms
 Hard for users to find information, built in search often incomplete
 Forms sometimes map information only in one direction

 e.g. student ID to name, but not from name to student ID
 Nice talk motivating keyword search on enterprise Web applications

by Duda et al, CIDR 2007
http://univ.edu/acadrecords/studentinfo?ID=12345678

… grade, contact, and other information …

Thursday, September 1, 2011

http://www.cidrdb.org/cidr2007/slides/p11-cristian-duda.ppt
http://www.cidrdb.org/cidr2007/slides/p11-cristian-duda.ppt
http://www.cidrdb.org/cidr2007/slides/p11-cristian-duda.ppt
http://www.cidrdb.org/cidr2007/slides/p11-cristian-duda.ppt

4

Problem Statement

 System Model:
 Set of forms, each taking 0 or more parameters
 Result of a form = union of results of one or more

parameterized queries
 E.g. studentinfo form with parameter $ID

 displays name and grades of the student
1. select ID, name from student where ID = $ID
2. select * from grades where ID = $ID

 Keyword search on form results
 given set of keywords, return (form ID, parameter)

combinations whose result contains given keywords
 Ranked in a meaningful order

VLDB 2011
Thursday, September 1, 2011

5

Related Work
 Lots of papers on search (BANKS, Discover, DBXplorer, …)

 Don’t address presentation of results
 Precis, Qunits, Object summaries

 Improve on presentation of information related to entities
 But don’t address search

 Predicate-based indexing (Duda et al. [CIDR 2007])
 Materializes and indexes form results for all possible parameter values
 But materialized results must be maintained

 Same problem with virtual documents (Su and Widom [IDEAS05])
 Efficient maintenance not discussed in prior work
 Our experimental results show high cost even with efficient incremental

view maintenance
 Find potentially relevant forms from a pre-generated set of forms

Chu et al. (SIGMOD 2009, VLDB 2010)
 But do not generate parameter values

VLDB 2011
Thursday, September 1, 2011

6

Assumptions and Safety

 Form queries take parameters which come directly
from form parameters
 Only mandatory parameters, no optional parameters
 Parameters prefixed with $: e.g. $Id, $dept
 E.g. Πnameσdept = $dept (prof)

 Query Q: maps parameters P to results
 Inverted query IQ: maps keywords K to parameters

P, s.t. Q(P) contains K
 Safety: inverted query may have infinite # of results

 Q: Πnameσdept > $dept (prof)
 Q: Πnameσdept = $dept ˅ Id=$Id (prof)

VLDB 2011
Thursday, September 1, 2011

7

Sufficient Conditions for
Safety
 Restrictions on form queries to ensure safety

 Each parameter must be equated to some attribute
 E.g. r.aj = $Pi; r.aj is a called a parameter attribute
 Above must appear as a conjunct in overall selection predicate

 See paper for a few more restrictions for outerjoins and NOT IN/NOT
Exists subqueries (antijoins)

 In some cases queries can be rewritten to satisfy above
conditions
 E.g. if parameter values for $P must appear in R(A),

rewrite Q to Q σA=$P (R)

 We handle some unsafe cases by using a “*” answer
representation
 e.g. (Form 1, $dept = ‘CS’ and $Id = *)

VLDB 2011
Thursday, September 1, 2011

7

Sufficient Conditions for
Safety
 Restrictions on form queries to ensure safety

 Each parameter must be equated to some attribute
 E.g. r.aj = $Pi; r.aj is a called a parameter attribute
 Above must appear as a conjunct in overall selection predicate

 See paper for a few more restrictions for outerjoins and NOT IN/NOT
Exists subqueries (antijoins)

 In some cases queries can be rewritten to satisfy above
conditions
 E.g. if parameter values for $P must appear in R(A),

rewrite Q to Q σA=$P (R)

 We handle some unsafe cases by using a “*” answer
representation
 e.g. (Form 1, $dept = ‘CS’ and $Id = *)

VLDB 2011
Thursday, September 1, 2011

8

Query Inversion 1:1

 Keyword Independent Inverted Query (KIIQ)
 Intuition: Output parameter value along with result

 for all possible parameter values
 How?: Drop parameter predicate, e.g. Id = $Id and

add parameter attribute, e.g. Id, to projection list
 Example:

 Q= πname σId=$Id (prof) KIIQ= πname, Id (prof)
 Issue: what if intermediate operation blocks parameter

attribute from reaching top of query?
 Selection/join: not an issue
 Projection: Just add parameter attribute to projection list
 Aggregation, etc: will see later.

1 Acknowledgement: Idea of inversion arose during discussions
 with Surajit Chaudhuri VLDB 2011
Thursday, September 1, 2011

9

Query Inversion 2:

VLDB 2011
Thursday, September 1, 2011

9

Query Inversion 2:
 Keyword Dependent Inverted Query (IQ)
 Add selection on keyword, and output only parameter values

VLDB 2011
Thursday, September 1, 2011

9

Query Inversion 2:
 Keyword Dependent Inverted Query (IQ)
 Add selection on keyword, and output only parameter values

 IQ= π$params(σkeyword-sels(KIIQ))

 E.g.: Q= πname σId=$Id (prof) Keyword query= {‘John’}

VLDB 2011
Thursday, September 1, 2011

9

Query Inversion 2:
 Keyword Dependent Inverted Query (IQ)
 Add selection on keyword, and output only parameter values

 IQ= π$params(σkeyword-sels(KIIQ))

 E.g.: Q= πname σId=$Id (prof) Keyword query= {‘John’}

 KIIQ= πId (prof)
 IQ= πId (σContains((name, Id), “John”)(prof))

 Contains((R.A1,R.A2,..),’K’) efficiently supported using text indices

VLDB 2011
Thursday, September 1, 2011

9

Query Inversion 2:
 Keyword Dependent Inverted Query (IQ)
 Add selection on keyword, and output only parameter values

 IQ= π$params(σkeyword-sels(KIIQ))

 E.g.: Q= πname σId=$Id (prof) Keyword query= {‘John’}

 KIIQ= πId (prof)
 IQ= πId (σContains((name, Id), “John”)(prof))

 Contains((R.A1,R.A2,..),’K’) efficiently supported using text indices
 Parameter attributes like “Id” included in Contains even though if

not in projection list,
 Multiple keywords: use intersection

 E.g. K = {‘John’, ‘Smith’}

 πId (σContains((name, Id), “John”)(prof))
∩ πId (σContains((name, Id), “Smith”)(prof))

VLDB 2011
Thursday, September 1, 2011

10

Queries With Multiple Relations
 Q= πname, teaches.ctitleσθ ^ Id=$Id (prof teaches)

 Id and Name attributes of prof

 KIIQ= πId,name, teaches.ctitleσθ (prof teaches)

 IQ= πIdσContains((Id,name,teaches.ctitle), ‘John’) (σθ (prof teaches))
 BUT most databases won’t support keyword indexes across

multiple relations, so we split into
 πId (σContains((Id,name), ‘John’) ˅ Contains((teaches.ctitle), ‘John’) (σθ (prof teaches)))

 Alternative using union more efficient in practice
 πId (σContains((Id,name), ‘John’) (σθ (prof teaches)))
 U πId (σContains((teaches.ctitle), ‘John’) (σθ (prof teaches)))

Note: Contains predicate will usually get pushed below join by query optimizer

VLDB 2011
Thursday, September 1, 2011

11

Complex Queries

 We focus on creating KIIQ
 Key intuition: pull parameter attributes to top after

removing parameter selection
 Usual way of converting KIIQ to IQ

 Pulling Parameter Attribute above Aggregation
 E.g. Q= Aγsum(B) (σθ ˄ Id=$Id (E))
 KIIQ(Q) = A,Idγsum(B) (σθ (E))

 Intersection
 Q= Q1 ∩ Q2
 KIIQ(Q) = KIIQ(Q1) KIIQ(Q2)

 Note that parameters may be different for Q1 and Q2

VLDB 2011
Thursday, September 1, 2011

11

Complex Queries

 We focus on creating KIIQ
 Key intuition: pull parameter attributes to top after

removing parameter selection
 Usual way of converting KIIQ to IQ

 Pulling Parameter Attribute above Aggregation
 E.g. Q= Aγsum(B) (σθ ˄ Id=$Id (E))
 KIIQ(Q) = A,Idγsum(B) (σθ (E))

 Intersection
 Q= Q1 ∩ Q2
 KIIQ(Q) = KIIQ(Q1) KIIQ(Q2)

 Note that parameters may be different for Q1 and Q2

VLDB 2011
Thursday, September 1, 2011

12

Union Queries and Multiple
Query Forms
 Forms with multiple queries

 Form result = union of query results
 Case of union queries is similar
 E.g. Given Id as parameter, print name of professor

and titles of courses taught
 πnameσ Id=$Id (prof) and πctitleσ Id=$Id (teaches)

 Case 1: Single keyword, same parameters for all
queries
 IQ = union of IQ for each query
 E.g. π Idσ Contains((Id,name), ‘John’) (prof)

 U πIdσ Contains((Id,ctitle), ‘John’) , (teaches)
 Does not work if different sets of parameters

Thursday, September 1, 2011

13

Multiple Query: Case 2

 Single keyword, different parameters across
queries
 E.g. πnameσ Id=$Id (prof) and πctitleσ dept=$dept (teaches)

 Define don’t care value : ‘*’ (matches all values)
 π Id,*σ Contains((Id,name), ‘John’) (prof)

 U π*,deptσ Contains((dept,ctitle), ‘John’) (teaches)
 Multiple keyword, different parameters

 Do as above for each keyword: IQk1, IQk2
 Intersect results: IQk1 ∩ IQk2
 Intersection not trivial due to ‘*’
 Two approaches: KAT and QAT

VLDB 2011
Thursday, September 1, 2011

14

KAT: Keyword at a Time
 Given queries Qi, Keywords Kj, and parameters Pk

 For each Qi, Kj,
 let QiKj = result of inverted query for Qi on Kj, with * for each

parameter Pk not in Qi
 Eg: Q1Kj: Id,Dept,* Q2Kj: Id, *, Year

 Then combine answers, but using binding patterns
 Using joins on non-* parameters

 Q1K1-Q1K2: Join on Id, Dept
 Q1K1-Q2K2, Q1K2-Q2K1: Join on Id
 Q2K1-Q2K2: Join on Id, Year

 Details of optimizations and implementation in paper

VLDB 2011
Thursday, September 1, 2011

15

QAT: Query at a Time
 Given queries Qi, and Keywords Kj

 Create result QiKj for each keyword/query combo.
 For each Qi combine results for all Kj, using bitmap

 E.g. R1: (Id, Dept, bitmap), Bitmap: 1 bit per keyword
 R2:(Id, Year, bitmap)

 Then combine answers, but using binding patterns
 Case 1: 2 queries: R = R1 R2, and merge bitmaps
 Case 2: All queries have same parameters

 Again use full outerjoin and merge bitmaps
 General case: R = R1 U+ R2 U + R1 R2

 U+ denotes outer union; merge bitmaps as before
 Finally, filter out results using bitmap
 Details in paper

VLDB 2011
Thursday, September 1, 2011

16

Other Cases

 Subqueries:
 Trivial if subqueries don’t have parameters
 IN/EXISTS/SOME subqueries

 Basic approach: decorrelate subqueries where
possible

 NOT IN, NOT EXISTS, ALL subqueries (antijoin)
 disallow parameters in such subqueries (not safe)

 Static/application generated text in forms
 Remove from keyword query if present in form

VLDB 2011

Thursday, September 1, 2011

17

Ranking

 Motivation for ranking
 Form 1: Courses taught by particular instructor
 Form 2: Courses in a particular department

 Form result size much larger
 Form 3: Courses taken by particular student

 Form result is small, but many parameter values
 We rank forms, and rank parameters within forms

 Ranking of forms
 Avg: Average size of form result (precomputed)
 AvgMult: Avg form result size * Number of distinct result

parameter values
 Ranking of parameters within form based on heuristics

 E.g. current user ID/year/semester, department of current user
 Special case for multiquery forms where keywords present in

form prefix for some parameter value
VLDB 2011

Thursday, September 1, 2011

18

Performance Study

 IIT-Bombay Database Application
 Real application
 90 forms,1 GB of data

 Queries used: model realistic goals for
students and faculty

 Basic desktop machine with low end disk and
generic 64 GB SATA MLC Flash disk

VLDB 2011
Thursday, September 1, 2011

19

Result/Ranking Quality
 Formulated several queries seeking

information from academic database
 Found position of form returning desired

answer
 Average position:

 2.42 for AVG, 1.83 for AVGMULT
 Max position: 6 for AVG, 3 for AVGMULT

 Heuristics for ranking parameters within form
worked well
 Need to generalize heuristics: future work

VLDB 2011
Thursday, September 1, 2011

20

Scalability with #Keywords +
Hard Disk vs Flash

 Set of 5 keywords
 for N < 5 keywords, avg of all subsets of size N

 Cold cache: restart DB, flush file system cache
 Recommend flash storage for best performance

VLDB 2011
Thursday, September 1, 2011

21

 KAT vs QAT: QAT slightly faster

Keyword Performance: KAT vs
QAT

VLDB 2011
Thursday, September 1, 2011

22

Scalability With #Forms

 Sublinear scaling with #forms
 Pruning optimization: eliminate query if some keyword is not

present in any of its relations
 Works very well

VLDB 2011
Thursday, September 1, 2011

23

Form Result Materialization
 Overheads of form materialization approach

 Implemented incremental view maintenance for form
queries on updates to underlying relations

 Time overhead of 1 second on flash for adding course
registrations, which normally takes 10s of msecs.
 Unacceptable at peak load

 Space overhead: 1.4 GB extra for 1 GB academic
database

 Hard to incrementally maintain some queries
 Our approach has no overheads on normal

operation

VLDB 2011
Thursday, September 1, 2011

24

Conclusion

 Our techniques support efficient keyword search on
Web applications
 Without any intrusive changes to application
 Practical, and works especially well with flash disk

 Future work
 Better ranking functions, customized to user
 Global fulltext index on all tables to reduce seeks
 Larger class of queries (e.g. top-K, case statements)
 Conditional query execution (branches in application)
 Automated analysis of applications to extract form queries
 Integration with access control

 Implemented in our prototype, but need to generalize

VLDB 2011
Thursday, September 1, 2011

25

Screenshot of Query Result

Thursday, September 1, 2011

