

# Efficient Diversification of Web Search Results

G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri  
ISTI-CNR, Pisa, Italy



# Web Search Results Diversification

- Query: “Vinci”, what is the user’s intent?
  - Information on Leonardo da Vinci?
  - Information on Vinci, the small village in Tuscany?
  - Information on Vinci, the company?
  - Others?

# Web Search Results Diversification



## [Vinci \(2004\)](#)

[movies.yahoo.com](#)

Inveterate thief Cuma, on parole from prison, uses a once-in-a-lifetime chance to swipe the national treasure, Da... [more](#)

Running Time: 1 hr 51 min

Directed by: [Juliusz Machulski](#)

Starring: [Borys Szyc](#), [Robert Wieckiewicz](#), [Jan Machulski](#), [Kamilla Baar](#), ... [more](#)

[Try this search on my phone](#)

## [VINCI, one of the world's leading concession and ...](#)

Press release. 05/18/2011 GDF SUEZ, VINCI and AREVA join forces to develop France's offshore wind industry. 05/10/2011 The VINCI Foundation for the Community winner of the 2011 ...

[www.vinci.com/vinci.nsf/en/index.htm](#) - [Cached](#)

[Companies](#)

[Management](#)

[Careers](#)

[Shareholders](#)

[Finance](#)

[Contact](#)

[News Update](#)

[Finance : Diary](#)

[more results from vinci.com »](#)

## [Vinci](#)

Lincoln Park location. Special events details, photographs and menu provided.

[vincichicago.com](#)

## [VINCI, un des premiers groupes mondiaux de concessions et de ...](#)

[Translate](#)

Présent dans plus de 120 pays, VINCI poursuit un projet économique et social inscrit dans la durée et à l'ambition de partager ses réussites avec ses salariés, ses ...

[vinci.com](#) - [Cached](#)

## [Vinci, Tuscany - Wikipedia, the free encyclopedia](#)

[Geography](#) | [History](#) | [Main Sights](#) | [Sister city](#)

Vinci is a town and comune of Firenze province in the Italian region of Tuscany. The birthplace of Renaissance polymath Leonardo da Vinci lies just outside the town.

[en.wikipedia.org/wiki/Vinci,\\_Italy](#) - [Cached](#)



t is the user's intent?

## [Vinci \(construction\) - Wikipedia, the free encyclopedia](#)

[History](#) | [Ownership](#) | [Financial data](#) | [Turnover analysis](#)

Vinci is a French construction and electrical engineering company, formerly called Société Générale d'Enterprises. It employs over 164,000 people and is the largest construction company...

[en.wikipedia.org/wiki/Vinci\\_\(construction\)](#) - [Cached](#)

## ['inci, t](#)

### [Baseball Gloves, Softball Gloves and Equipment from Vinci](#)

Vinci, manufacturer of high-quality baseball gloves, softball gloves and equipment since 1997, was founded on a promise to a father that, "One day your ...

[www.vincipro.com](#) - [Cached](#)

## ['inci, t](#)

### [Celebrating 10 Years of VINCI](#)

[www.vinci.plc.uk](#)

## [Vinci | Board Game | BoardGameGeek](#)

Along the lines of History of the World by Avalon Hill, players cycle through a series of European civilizations as they attempt to score the most points using the ...

[www.boardgamegeek.com/boardgame/60](#) - [Cached](#)

## [Vinci Strings](#)

In 1953 Amelio Vinci revolutionized the music industry when he invented the first automated string-winding machine, which enhanced winding accuracy and created ...

[vincistrings.com](#) - [Cached](#)

## [Benelli Vinci | Hunting Shotguns](#)

Benelli Vinci marks a revolution in hunting shotguns. Vinci is the world's fastest-shooting, softest-kicking, most reliable lightweight 12-gauge shotgun. Its innovative ...

[www.benelliusa.com/shotguns/benelli\\_vinci.php](#) - [Cached](#)

# Results Diversification as a Coverage Problem

- Hypothesis:
  - For each user's **query** I can tell what is the set of all possible **intents**
  - For each **document** in the collection I can tell what are all the possible user's **intents** it represents
    - each **intent** for each **document** is, possibly, **weighted** by a **value** representing how much that intent is represented by that document (e.g., 1/2 of document  $D$  is related to the intent of “digital photography techniques”)
- Goal:
  - Select the set of  $k$  documents in the collection covering the maximum amount of intent weight. i.e., maximize the number of satisfied users.

# State-of-the-Art Methods

- IASelect:

- Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Jeong. 2009. **Diversifying search results**. In *Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM '09)*, Ricardo Baeza-Yates, Paolo Boldi, Berthier Ribeiro-Neto, and B. Barla Cambazoglu (Eds.). ACM, New York, NY, USA, 5-14.

- xQuAD:

- Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. **Exploiting query reformulations for Web search result diversification**. In *Proceedings of the 19th International Conference on World Wide Web*, pages 881-890, Raleigh, NC, USA, 2010. ACM.

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

intents  
 the weight

is the probability of being relative  
 to intent  $c$

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

*intents* *the weight*  
*is the probability of being relative to intent c*

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

*d is not pertinent to c*

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

*intents* *the weight*  
*is the probability of being relative to intent c*

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

↑ *d is not pertinent to c*  
*no doc is pertinent to c*

# Diversify( $k$ )

DIVERSIFY( $k$ ): Given query  $q$ , a set of documents  $R_q$ , a probability distribution of categories for the query  $P(c|q)$ , the quality values of the documents  $V(d|q, c)$ ,  $\forall d \in \mathcal{D}$  and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

*intents* *the weight*  
*is the probability of being relative to intent c*

$$P(S|q) = \sum_c P(c|q) \left( 1 - \prod_{d \in S} (1 - V(d|q, c)) \right)$$

at least one doc is pertinent to c
no doc is pertinent to c
d is not pertinent to c

# Known Results

- Diversify( $k$ ) is NP-hard:
  - Reduction from max-weight coverage
- Diversify( $k$ )'s objective function is sub-modular:
  - Admits a  $(1-1/e)$ -approx. algorithm.
  - The algorithm works by inserting one result at a time, we insert the result with the max marginal utility.
- Quadratic complexity in the number of results to consider:
  - at each iteration scan the complete list of not-yet-inserted results.

# Known Results

- Diversify( $k$ ) is NP-hard
- Reduction from max  $f(S + d) - f(S) \geq f(T + d) - f(T)$ .
- Diversify( $k$ )'s objective function is sub-modular:
  - Admits a  $(1-1/e)$ -approx. algorithm.
  - The algorithm works by inserting one result at a time, we insert the result with the max marginal utility.
  - Quadratic complexity in the number of results to consider:
    - at each iteration scan the complete list of not-yet-inserted results.

# ⚠ It looks reasonable, but... ⚠

- ... it may not diversify!
- The objective function is NOT about including as many categories as possible in the final results set.
- It is possible that even if there are less than  $k$  categories, NOT all categories will be covered:
  - the formulation explicitly considers how well a document satisfies a given category.
  - If a category  $c$  is dominant and not well satisfied, more documents from  $c$  will be added:
  - possible at the expense of not showing certain categories altogether.

# xQuAD\_Diversify( $k$ )

xQUAD\_DIVERSIFY( $k$ ): Given a query  $q$ , a set of ranked documents  $R_q$  retrieved for  $q$ , a mixing parameter  $\lambda \in [0, 1]$ , two probability distributions  $P(d|q)$  and  $P(d, \bar{S}|q)$  measuring, respectively, the likelihood of document  $d$  being observed given  $q$ , and the likelihood of observing  $d$  but not the documents in the solution  $S$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes for each  $d \in S$

$$(1 - \lambda) \cdot P(d|q) + \lambda \cdot P(d, \bar{S}|q)$$

# xQuAD\_Diversify( $k$ )

xQUAD\_DIVERSIFY( $k$ ): Given a query  $q$ , a set of ranked documents  $R_q$  retrieved for  $q$ , a mixing parameter  $\lambda \in [0, 1]$ , two probability distributions  $P(d|q)$  and  $P(d, \bar{S}|q)$  measuring, respectively, the likelihood of document  $d$  being observed given  $q$ , and the likelihood of observing  $d$  but not the documents in  $\bar{S}$ , find a set of  $k$  documents  $S \subseteq R_q$  with  $d \in S$

$$P(d, \bar{S}|q) = \sum_{q' \in S_q} \left[ P(q'|q) P(d|q') \prod_{d_j \in S} 1 - P(d_j|q') \right]$$

$$(1 - \lambda) \cdot P(d|q) + \lambda \cdot P(d, \bar{S}|q)$$

# xQuAD\_Diversify( $k$ )

xQUAD\_DIVERSIFY( $k$ ): Given a query  $q$ , a set of ranked documents  $R_q$  retrieved for  $q$ , a mixing parameter  $\lambda \in [0, 1]$ , two probability distributions  $P(d|q)$  and  $P(d, \bar{S}|q)$  measuring, respectively, the likelihood of document  $d$  being observed given  $q$ , and the likelihood of observing  $d$  but not the documents in  $\bar{S}$ , find a set of  $k$  documents  $S \subseteq R_q$  with  $d \in S$

$$P(d, \bar{S}|q) = \sum_{q' \in S_q} \left[ P(q'|q) P(d|q') \prod_{d_j \in S} 1 - P(d_j|q') \right]$$

$$(1 - \lambda) \cdot P(d|q) + \lambda \cdot P(d, \bar{S}|q)$$

Same problem as before...  
It may not diversify!



# Our Proposal: MaxUtility

# Our Proposal: MaxUtility



# Our Proposal: MaxUtility





# Our Proposal: MaxUtility



# Our Proposal: MaxUtility





# Our Proposal: MaxUtility



# MaxUtility\_Diversify( $k$ )

MAXUTILITY\_DIVERSIFY( $k$ ): Given a query  $q$ , the set  $R_q$  of results for  $q$ , two probability distributions  $P(d|q)$  and  $P(q'|q) \forall q' \in S_q$  measuring, respectively, the likelihood of document  $d$  being observed given  $q$ , and the likelihood of having  $q'$  as a specialization of  $q$ , the utilities  $\tilde{U}(d|R_{q'})$  of documents, a mixing parameter  $\lambda \in [0, 1]$ , and an integer  $k$ . Find a set of documents  $S \subseteq R_q$  with  $|S| = k$  that maximizes

$$\tilde{U}(S|q) = \sum_{d \in S} \sum_{q' \in S_q} (1 - \lambda)P(d|q) + \lambda P(q'|q) \tilde{U}(d|R_{q'})$$

with the constraints that every specialization is covered proportionally to its probability. Formally, let  $R_q \bowtie q' = \{d \in R_q | U(d|R_{q'}) > 0\}$ . We require that for each  $q' \in S_q$ ,  $|R_q \bowtie q'| \geq \lfloor k \cdot P(q'|q) \rfloor$ .

# Why it is Efficient?

- By using a simple arithmetic argument we can show that:

$$\begin{aligned}
 \tilde{U}(S|q) &= (1 - \lambda)|S_q| \sum_{d \in S} P(d|q) + \\
 &+ \lambda \sum_{q' \in S_q} P(q'|q) \sum_{d \in S} \tilde{U}(d|R_{q'}) 
 \end{aligned}$$

- Therefore we can find the optimal set  $S$  of diversified documents by using a sort-based approach.

# OptSelect

---

**Algorithm**    OptSelect ( $q, S_q, R_q, k$ )

---

01.  $S \leftarrow \emptyset;$   
/\* Heap( $n$ ) instantiates a new  $n$ -size heap \*/
02.  $M \leftarrow \text{new Heap}(k);$
03. **For Each**  $q' \in S_q$  **Do**
04.     $M_{q'} \leftarrow \text{new Heap}(\lfloor k \cdot P(q'|q) \rfloor + 1);$
05.    **For Each**  $d \in R_q$  **Do**
06.      **If**  $\tilde{U}(d|R_{q'}) > 0$  **Then**  $M_{q'}.push(d);$  **Else**  $M.push(d);$
07.    **For Each**  $q' \in S_q$  s.t.  $M_{q'} \neq \emptyset$  **Do**
08.       $x \leftarrow \text{pop } d \text{ with the max } \tilde{U}(d|q) \text{ from } M_{q'};$
09.       $S \leftarrow S \cup \{x\};$
10.    **While**  $|S| < k$  **Do**
11.       $x \leftarrow \text{pop } d \text{ with the max } \tilde{U}(d|q) \text{ from } M;$
12.       $S \leftarrow S \cup \{x\};$
13. **Return** ( $S$ );

---

# OptSelect

---

**Algorithm** OptSelect ( $q, S_q, R_q, k$ )

---

01.  $S \leftarrow \emptyset;$
- /\* Heap( $n$ ) instantiates a new  $n$ -size heap \*/
02.  $M \leftarrow \text{new Heap}(k);$
03. **For Each**  $q' \in S_q$  **Do**
04.    $M_{q'} \leftarrow \text{new Heap}(\lfloor k \cdot P(q'|q) \rfloor)$
05.   **For Each**  $d \in R_q$  **Do**
06.     **If**  $\tilde{U}(d|R_{q'}) > 0$  **Then**  $M_{q'}.push(d)$
07.   **For Each**  $q' \in S_q$  s.t.  $M_{q'} \neq \emptyset$  **Do**
08.      $x \leftarrow \text{pop } d \text{ with the max } \tilde{U}(d|q) \text{ from } M_{q'};$
09.      $S \leftarrow S \cup \{x\};$
10.   **While**  $|S| < k$  **Do**
11.      $x \leftarrow \text{pop } d \text{ with the max } \tilde{U}(d|q) \text{ from } M;$
12.      $S \leftarrow S \cup \{x\};$
13. **Return** ( $S$ );

---

| Algorithm | Complexity      |
|-----------|-----------------|
| IASelect  | $O(nk)$         |
| xQuAD     | $O(nk)$         |
| OptSelect | $O(n \log_2 k)$ |

# The Specialization Set $S_q$

- It is crucial for OptSelect to have the set of specialization available for each query.
- Our method is, thus, *query log-based*.
  - we use a query recommender system to obtain a set of queries from which  $S_q$  is built by including the most popular (i.e., freq. in query log  $> f(q) / s$ ) recommendations:

---

|                  |                                                  |
|------------------|--------------------------------------------------|
| <b>Algorithm</b> | AmbiguousQueryDetect( $q, \mathcal{A}, f(), s$ ) |
|------------------|--------------------------------------------------|

---

```

/* given the submitted query  $q$ , a query recommendation algorithm
 $\mathcal{A}$ , and an integer  $s$  compute the set  $\widehat{S}_q \subseteq Q$  of possible specializa-
tions of  $q$  */
1.  $\widehat{S}_q \leftarrow \mathcal{A}(q);$ 
/* select from  $\widehat{S}_q$  the most popular specializations */
2.  $S_q \leftarrow \{q' \in \widehat{S}_q \mid f(q') \geq \frac{f(q)}{s}\};$ 
3. If  $|S_q| \geq 2$  Then Return  $(S_q)$ ; Else Return  $(\emptyset)$ ;

```

---

*D. Broccolo, L. Marcon, F.M. Nardini, R. Perego, F. Silvestri*  
*Generating Suggestions for Queries in the Long Tail with an Inverted Index*  
*Information Processing & Management, August 2011*

# Probability Estimation

$$P(q' | q) = f(q') / \sum_{q' \in S_q} f(q')$$

# Usefulness of a Result

DEFINITION (RESULTS' UTILITY). *The utility of a result  $d \in R_q$  for a specialization  $q'$  is defined as:*

$$U(d|R_{q'}) = \sum_{d' \in R_{q'}} \frac{1 - \delta(d, d')}{\text{rank}(d', R_{q'})}.$$

*where  $R_{q'}$  is the list of results that the search engine returned for specialized query  $q'$ .*

# Usefulness of a Result

DEFINITION (RESULTS' UTILITY). *The utility of a result  $d \in R_q$  for a specialization  $q'$  is defined as:*

$$U(d|R_{q'}) = \sum_{d' \in R_{q'}} \frac{1 - \delta(d, d')}{\text{rank}(d', R_{q'})}.$$

$\delta(d_1, d_2) = 1 - \text{cosine}(d_1, d_2)$

where  $R_{q'}$  is the list of results that the search engine returned for specialized query  $q'$ .

# Experiments: Settings

- TREC 2009 Web track's Diversity Task framework:
  - ClueWeb-B, the subset of the TREC ClueWeb09 dataset
  - The 50 topics (i.e., queries) provided by TREC
  - We evaluate  $\alpha$ -NDCG and IA-P
- All the tests were conducted on a Intel Core 2 Quad PC with 8Gb of RAM and Ubuntu Linux 9.10 (kernel 2.6.31-22).

# Experiments: Quality

|              | c    | $\alpha$ -NDCG |              |              |              |              | IA-P         |              |              |              |       |
|--------------|------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|              |      | @5             | @10          | @20          | @100         | @1000        | @5           | @10          | @20          | @100         | @1000 |
| DPH Baseline | -    | 0.190          | 0.212        | 0.240        | 0.303        | 0.303        | 0.092        | 0.093        | 0.088        | 0.058        | 0.006 |
| OptSelect    | 0    | <b>0.213</b>   | 0.227        | 0.255        | 0.318        | 0.352        | 0.111        | 0.100        | <b>0.092</b> | 0.061        | 0.012 |
|              | 0.05 | <b>0.213</b>   | 0.228        | 0.256        | 0.319        | 0.352        | <b>0.112</b> | <b>0.101</b> | 0.091        | 0.061        | 0.012 |
|              | 0.10 | 0.195          | 0.220        | 0.246        | 0.312        | 0.343        | 0.102        | 0.097        | 0.090        | <b>0.062</b> | 0.012 |
|              | 0.15 | 0.190          | 0.216        | 0.246        | 0.305        | 0.341        | 0.101        | 0.098        | 0.090        | 0.061        | 0.012 |
|              | 0.20 | <b>0.214</b>   | <b>0.241</b> | <b>0.262</b> | <b>0.324</b> | <b>0.359</b> | 0.110        | 0.101        | 0.090        | 0.060        | 0.012 |
|              | 0.25 | 0.190          | 0.213        | 0.238        | 0.305        | 0.339        | 0.095        | 0.098        | 0.087        | 0.058        | 0.012 |
|              | 0.35 | 0.186          | 0.206        | 0.235        | 0.302        | 0.335        | 0.089        | 0.090        | 0.086        | 0.058        | 0.012 |
|              | 0.50 | 0.186          | 0.208        | 0.236        | 0.300        | 0.334        | 0.091        | 0.091        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| xQuAD        | 0    | 0.211          | 0.241        | 0.260        | 0.320        | 0.354        | 0.103        | 0.102        | 0.090        | 0.058        | 0.012 |
|              | 0.05 | <b>0.214</b>   | <b>0.242</b> | <b>0.260</b> | <b>0.323</b> | <b>0.355</b> | <b>0.108</b> | <b>0.103</b> | <b>0.089</b> | <b>0.058</b> | 0.012 |
|              | 0.10 | 0.193          | 0.226        | 0.249        | 0.308        | 0.341        | 0.101        | 0.101        | 0.090        | 0.058        | 0.012 |
|              | 0.15 | 0.200          | 0.227        | 0.253        | 0.315        | 0.348        | 0.099        | 0.095        | 0.087        | 0.058        | 0.012 |
|              | 0.20 | 0.204          | 0.234        | 0.262        | 0.321        | 0.354        | 0.096        | 0.099        | 0.087        | 0.058        | 0.012 |
|              | 0.25 | 0.181          | 0.211        | 0.236        | 0.303        | 0.336        | 0.090        | 0.095        | 0.085        | 0.058        | 0.012 |
|              | 0.35 | 0.185          | 0.209        | 0.239        | 0.302        | 0.335        | 0.091        | 0.092        | 0.088        | 0.058        | 0.012 |
|              | 0.50 | 0.190          | 0.212        | 0.240        | 0.303        | 0.336        | 0.092        | 0.093        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| IASelect     | 0    | <b>0.206</b>   | <b>0.215</b> | <b>0.245</b> | <b>0.302</b> | 0.334        | 0.097        | 0.089        | 0.079        | 0.044        | 0.009 |
|              | 0.05 | 0.205          | 0.214        | 0.243        | 0.299        | 0.330        | <b>0.098</b> | 0.090        | 0.078        | 0.044        | 0.009 |
|              | 0.10 | 0.193          | 0.200        | 0.227        | 0.279        | 0.309        | <b>0.098</b> | 0.088        | 0.075        | 0.039        | 0.008 |
|              | 0.15 | 0.169          | 0.185        | 0.207        | 0.259        | 0.288        | 0.089        | 0.078        | 0.064        | 0.039        | 0.008 |
|              | 0.20 | 0.182          | 0.197        | 0.229        | 0.284        | 0.314        | 0.085        | 0.074        | 0.067        | 0.046        | 0.009 |
|              | 0.25 | 0.198          | 0.214        | 0.243        | 0.301        | 0.332        | 0.092        | 0.083        | 0.076        | 0.052        | 0.011 |
|              | 0.35 | 0.192          | 0.208        | 0.241        | 0.299        | 0.332        | 0.095        | <b>0.093</b> | 0.087        | 0.057        | 0.012 |
|              | 0.50 | 0.192          | 0.214        | 0.243        | 0.306        | <b>0.338</b> | 0.093        | 0.091        | 0.087        | <b>0.058</b> | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | <b>0.093</b> | <b>0.088</b> | <b>0.058</b> | 0.012 |

# Experiments: Quality

|              | c    | $\alpha$ -NDCG |              |              |              |              | IA-P         |              |              |              |       |
|--------------|------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|              |      | @5             | @10          | @20          | @100         | @1000        | @5           | @10          | @20          | @100         | @1000 |
| DPH Baseline | -    | 0.190          | 0.212        | 0.240        | 0.303        | 0.303        | 0.092        | 0.093        | 0.088        | 0.058        | 0.006 |
| OptSelect    | 0    | <b>0.213</b>   | 0.227        | 0.255        | 0.318        | 0.352        | 0.111        | 0.100        | <b>0.092</b> | 0.061        | 0.012 |
|              | 0.05 | <b>0.213</b>   | 0.228        | 0.256        | 0.319        | 0.352        | <b>0.112</b> | <b>0.101</b> | 0.091        | 0.061        | 0.012 |
|              | 0.10 | 0.195          | 0.220        | 0.246        | 0.312        | 0.343        | 0.102        | 0.097        | 0.090        | <b>0.062</b> | 0.012 |
|              | 0.15 | 0.190          | 0.216        | 0.246        | 0.305        | 0.341        | 0.101        | 0.098        | 0.090        | 0.061        | 0.012 |
|              | 0.20 | <b>0.214</b>   | <b>0.241</b> | <b>0.262</b> | <b>0.324</b> | <b>0.359</b> | 0.110        | 0.101        | 0.090        | 0.060        | 0.012 |
|              | 0.25 | 0.190          | 0.213        | 0.238        | 0.305        | 0.339        | 0.095        | 0.098        | 0.087        | 0.058        | 0.012 |
|              | 0.35 | 0.186          | 0.206        | 0.235        | 0.302        | 0.335        | 0.089        | 0.090        | 0.086        | 0.058        | 0.012 |
|              | 0.50 | 0.186          | 0.208        | 0.236        | 0.300        | 0.334        | 0.091        | 0.091        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| xQuAD        | 0    | 0.211          | 0.241        | 0.260        | 0.320        | 0.354        | 0.103        | 0.102        | 0.090        | 0.058        | 0.012 |
|              | 0.05 | <b>0.214</b>   | <b>0.242</b> | <b>0.260</b> | <b>0.323</b> | <b>0.355</b> | <b>0.108</b> | <b>0.103</b> | <b>0.089</b> | <b>0.058</b> | 0.012 |
|              | 0.10 | 0.193          | 0.226        | 0.249        | 0.308        | 0.341        | 0.101        | 0.101        | 0.090        | 0.058        | 0.012 |
|              | 0.15 | 0.200          | 0.227        | 0.253        | 0.315        | 0.348        | 0.099        | 0.095        | 0.087        | 0.058        | 0.012 |
|              | 0.20 | 0.204          | 0.234        | 0.262        | 0.321        | 0.354        | 0.096        | 0.099        | 0.087        | 0.058        | 0.012 |
|              | 0.25 | 0.181          | 0.211        | 0.236        | 0.303        | 0.336        | 0.090        | 0.095        | 0.085        | 0.058        | 0.012 |
|              | 0.35 | 0.185          | 0.209        | 0.239        | 0.302        | 0.335        | 0.091        | 0.092        | 0.088        | 0.058        | 0.012 |
|              | 0.50 | 0.190          | 0.212        | 0.240        | 0.303        | 0.336        | 0.092        | 0.093        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| IASelect     | 0    | <b>0.206</b>   | <b>0.215</b> | <b>0.245</b> | <b>0.302</b> | 0.334        | 0.097        | 0.089        | 0.079        | 0.044        | 0.009 |
|              | 0.05 | 0.205          | 0.214        | 0.243        | 0.299        | 0.330        | <b>0.098</b> | 0.090        | 0.078        | 0.044        | 0.009 |
|              | 0.10 | 0.193          | 0.200        | 0.227        | 0.279        | 0.309        | <b>0.098</b> | 0.088        | 0.075        | 0.039        | 0.008 |
|              | 0.15 | 0.169          | 0.185        | 0.207        | 0.259        | 0.288        | 0.089        | 0.078        | 0.064        | 0.039        | 0.008 |
|              | 0.20 | 0.182          | 0.197        | 0.229        | 0.284        | 0.314        | 0.085        | 0.074        | 0.067        | 0.046        | 0.009 |
|              | 0.25 | 0.198          | 0.214        | 0.243        | 0.301        | 0.332        | 0.092        | 0.083        | 0.076        | 0.052        | 0.011 |
|              | 0.35 | 0.192          | 0.208        | 0.241        | 0.299        | 0.332        | 0.095        | <b>0.093</b> | 0.087        | 0.057        | 0.012 |
|              | 0.50 | 0.192          | 0.214        | 0.243        | 0.306        | <b>0.338</b> | 0.093        | 0.091        | 0.087        | <b>0.058</b> | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | <b>0.093</b> | <b>0.088</b> | <b>0.058</b> | 0.012 |

# Experiments: Quality

|              | c    | $\alpha$ -NDCG |              |              |              |              | IA-P         |              |              |              |       |
|--------------|------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|              |      | @5             | @10          | @20          | @100         | @1000        | @5           | @10          | @20          | @100         | @1000 |
| DPH Baseline | -    | 0.190          | 0.212        | 0.240        | 0.303        | 0.303        | 0.092        | 0.093        | 0.088        | 0.058        | 0.006 |
| OptSelect    | 0    | <b>0.213</b>   | 0.227        | 0.255        | 0.318        | 0.352        | 0.111        | 0.100        | <b>0.092</b> | 0.061        | 0.012 |
|              | 0.05 | <b>0.213</b>   | 0.228        | 0.256        | 0.319        | 0.352        | <b>0.112</b> | <b>0.101</b> | 0.091        | 0.061        | 0.012 |
|              | 0.10 | 0.195          | 0.220        | 0.246        | 0.312        | 0.343        | 0.102        | 0.097        | 0.090        | <b>0.062</b> | 0.012 |
|              | 0.15 | 0.190          | 0.216        | 0.246        | 0.305        | 0.341        | 0.101        | 0.098        | 0.090        | 0.061        | 0.012 |
|              | 0.20 | <b>0.214</b>   | <b>0.241</b> | <b>0.262</b> | <b>0.324</b> | <b>0.359</b> | 0.110        | 0.101        | 0.090        | 0.060        | 0.012 |
|              | 0.25 | 0.190          | 0.213        | 0.238        | 0.305        | 0.339        | 0.095        | 0.098        | 0.087        | 0.058        | 0.012 |
|              | 0.35 | 0.186          | 0.206        | 0.235        | 0.302        | 0.335        | 0.089        | 0.090        | 0.086        | 0.058        | 0.012 |
|              | 0.50 | 0.186          | 0.208        | 0.236        | 0.300        | 0.334        | 0.091        | 0.091        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| xQuAD        | 0    | 0.211          | 0.241        | 0.260        | 0.320        | 0.354        | 0.103        | 0.102        | 0.090        | 0.058        | 0.012 |
|              | 0.05 | <b>0.214</b>   | <b>0.242</b> | <b>0.260</b> | <b>0.323</b> | <b>0.355</b> | <b>0.108</b> | <b>0.103</b> | <b>0.089</b> | <b>0.058</b> | 0.012 |
|              | 0.10 | 0.193          | 0.226        | 0.249        | 0.308        | 0.341        | 0.101        | 0.101        | 0.090        | 0.058        | 0.012 |
|              | 0.15 | 0.200          | 0.227        | 0.253        | 0.315        | 0.348        | 0.099        | 0.095        | 0.087        | 0.058        | 0.012 |
|              | 0.20 | 0.204          | 0.234        | 0.262        | 0.321        | 0.354        | 0.096        | 0.099        | 0.087        | 0.058        | 0.012 |
|              | 0.25 | 0.181          | 0.211        | 0.236        | 0.303        | 0.336        | 0.090        | 0.095        | 0.085        | 0.058        | 0.012 |
|              | 0.35 | 0.185          | 0.209        | 0.239        | 0.302        | 0.335        | 0.091        | 0.092        | 0.088        | 0.058        | 0.012 |
|              | 0.50 | 0.190          | 0.212        | 0.240        | 0.303        | 0.336        | 0.092        | 0.093        | 0.087        | 0.058        | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | 0.093        | 0.088        | 0.058        | 0.012 |
| IASelect     | 0    | <b>0.206</b>   | <b>0.215</b> | <b>0.245</b> | <b>0.302</b> | 0.334        | 0.097        | 0.089        | 0.079        | 0.044        | 0.009 |
|              | 0.05 | 0.205          | 0.214        | 0.243        | 0.299        | 0.330        | <b>0.098</b> | 0.090        | 0.078        | 0.044        | 0.009 |
|              | 0.10 | 0.193          | 0.200        | 0.227        | 0.279        | 0.309        | <b>0.098</b> | 0.088        | 0.075        | 0.039        | 0.008 |
|              | 0.15 | 0.169          | 0.185        | 0.207        | 0.259        | 0.288        | 0.089        | 0.078        | 0.064        | 0.039        | 0.008 |
|              | 0.20 | 0.182          | 0.197        | 0.229        | 0.284        | 0.314        | 0.085        | 0.074        | 0.067        | 0.046        | 0.009 |
|              | 0.25 | 0.198          | 0.214        | 0.243        | 0.301        | 0.332        | 0.092        | 0.083        | 0.076        | 0.052        | 0.011 |
|              | 0.35 | 0.192          | 0.208        | 0.241        | 0.299        | 0.332        | 0.095        | <b>0.093</b> | 0.087        | 0.057        | 0.012 |
|              | 0.50 | 0.192          | 0.214        | 0.243        | 0.306        | <b>0.338</b> | 0.093        | 0.091        | 0.087        | <b>0.058</b> | 0.012 |
|              | 0.75 | 0.190          | 0.212        | 0.240        | 0.303        | 0.337        | 0.092        | <b>0.093</b> | <b>0.088</b> | <b>0.058</b> | 0.012 |

# Experiments: Efficiency

| $ R_q $   | $k$   |        |        |          |          |
|-----------|-------|--------|--------|----------|----------|
|           | 10    | 50     | 100    | 500      | 1000     |
| OptSelect |       |        |        |          |          |
| 1,000     | 0.34  | 0.58   | 0.66   | 0.89     | 0.98     |
| 10,000    | 1.36  | 2.13   | 2.46   | 3.32     | 3.57     |
| 100,000   | 4.81  | 8.32   | 9.57   | 12.94    | 13.92    |
| xQuAD     |       |        |        |          |          |
| 1,000     | 0.43  | 1.64   | 3.31   | 14.82    | 30.18    |
| 10,000    | 3.27  | 16.69  | 32.22  | 148.41   | 298.63   |
| 100,000   | 36.27 | 143.67 | 285.69 | 1,425.82 | 2,849.83 |
| IASelect  |       |        |        |          |          |
| 1,000     | 0.57  | 1.68   | 3.92   | 20.81    | 39.82    |
| 10,000    | 4.23  | 23.03  | 40.82  | 203.11   | 409.43   |
| 100,000   | 48.04 | 205.46 | 408.61 | 2,039.22 | 4,071.81 |

# Conclusions and Future Work

- We studied the problem of search results diversification from an efficiency point of view
- We derived a diversification method (OptSelect):
  - same (or better) quality of the state of the art
  - up to 100 times faster
- Future work:
  - the exploitation of users' search history for personalizing result diversification
  - the use of click-through data to improve our effectiveness results, and
  - the study of a search architecture performing the diversification task in parallel with the document scoring phase (**See DDR2011 paper**)

# Question Time



Franco Maria Nardini

ISTI-CNR, Pisa Italy

<http://hpc.isti.cnr.it/~nardini>

[f.nardini@isti.cnr.it](mailto:f.nardini@isti.cnr.it)

# Backup Slides

# $\alpha$ -NDCG

- The  $\alpha$ -normalized discounted cumulative gain ( $\alpha$ -NDCG) metric balances relevance and diversity through the tuning parameter  $\alpha$ .
  - The larger the value of  $\alpha$ , the more diversity is rewarded. In contrast, when  $\alpha = 0$ , only relevance is rewarded, and this metric is equivalent to the traditional NDCG.
- DCG measures the usefulness, or gain, of a document based on its position in the result list.
  - $$DCG_p = \sum_{i=1}^p \frac{2^{rel_i} - 1}{\log_2(1 + i)}$$
  - Relevance scores might not be binary (i.e., relevant, not relevant) but also indicating how relevant a result is.
  - NDCG is the normalized version of DCG.
- More info at:
  - C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In Proc. SIGIR'08, pages 659–666. ACM, 2008.

# $\alpha$ -NDCG

- The  $\alpha$ -normalized discounted cumulative gain ( $\alpha$ -NDCG) metric balances relevance and diversity through the tuning parameter  $\alpha$ .
  - The larger the value of  $\alpha$ , the more diversity is rewarded. In contrast, when  $\alpha = 0$ , only relevance is rewarded, and this metric is equivalent to the traditional NDCG.
- DCG measures the usefulness of documents based on their position in the result list.
- $$\text{DCG}_p = \sum_{i=1}^p \frac{2^{r_{\text{rel}_i}} - 1}{\log_2(1+i)}$$
- Relevance scores might be  $r_k^i$
- NDCG is the normalized version of DCG.
- More info at:
  - C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In Proc. SIGIR'08, pages 659–666. ACM, 2008.

# IA-P

- Intent Aware - Precision
- As “traditional” precision measured at a certain cutoff
- Basically, precision is weighted on the probability of each intent.
- More info at:
  - Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Leong. 2009. **Diversifying search results**. In *Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM '09)*, Ricardo Baeza-Yates, Paolo Boldi, Berthier Ribeiro-Neto, and B. Barla Cambazoglu (Eds.). ACM, New York, NY, USA, 5-14.

# IA-P

- Intent Aware - Precision
- As “traditional” precision measured at a certain cutoff
- Basically, precision is weighted on 
$$\frac{1}{M} \sum_{t=1}^M \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{1}{k} \sum_{j=1}^k j_t(i, j)$$
.
- More info at:
  - Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Leong. 2009. **Diversifying search results**. In *Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM '09)*, Ricardo Baeza-Yates, Paolo Boldi, Berthier Ribeiro-Neto, and B. Barla Cambazoglu (Eds.). ACM, New York, NY, USA, 5-14.