Online Aggregation for Large
MapReduce Jobs

Niketan Pansare’, Vinayak Borkar,
Chris Jermaine’, Tyson Condie’

'Rice University, UC Irvine, *Yahoo! Research



Motivation

Implementation
Experiments

Conclusion



Motivation



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

(Note: final answer for this query is 1000)



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 1 second,

= Conventional Database: >

= With OLA extension:
= Qutput range estimate: [0, 2000 ] with 95% probability



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 2 minutes,

= Conventional Database: >

= With OLA extension:
= Qutput range estimate: [900, 1100 ] with 95% probability



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 4 minutes,

Al

SRicasewai

= Conventional Database:

= With OLA extension:
= Qutput range estimate: [950, 1040 ] with 95% probability



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 6 minutes,

= Conventional Database: ;) “ Pleaselwait

LY
 \
LY
b
)

= With OLA extension:
= Qutput range estimate: [990, 1010 ] with 95% probability



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 10 minutes,

ERicasewais

= Conventional Database:

= With OLA extension:
= Qutput range estimate: [995, 1005 | with 95% probability



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 30 minutes,

= Conventional Database: EPicasewaits

“7I1\°

= With OLA extension:
= Qutput range estimate: [999, 1001.5 ] with 95% probability

10



OLA example

select avg(stock price) from nasdag_db where company = 'xyz';

After 2 hours,
= Conventional Database:

= Qutput final answer: 1000
= With OLA extension:

= Qutput final answer: 1000
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Benefit of OLA

= |f acceptably accurate answer reached quickly, the query can
be aborted

= Conventional Database:

= With OLA extension:
= Qutput range estimate: [990, 1015 ] with 95% probability

STOP EARLY Il

Y 4 )




Why Stop Early ?

= Save human time (1 hour 54 minutes)

= 'Answer 1000' v/s 'Estimate 1002.5'
- For exploratory apps
- Inaccuracies in ETL process
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Why Stop Early ?

= Save human time (1 hour 54 minutes)

= 'Answer 1000' v/s 'Estimate 1002.5'
- For exploratory apps

- Inaccuracies in ETL process
= Save machine time — Cost |
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Why Stop Early ?

= Save human time (1 hour 54 minutes)

= 'Answer 1000' v/s 'Estimate 1002.5'
- For exploratory apps

- Inaccuracies in ETL process
= Save machine time — Cost |

= Very important when dealing with large data
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Why Stop Early ?

Online Aggregation
- Introduced in 1997

- Significant research impact (606
citations)

* Sa . ACM SIGMOD Test of Time Award

But, limited commercial impact
- Database market (self-managed)

‘4
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Self-managed DB — Cloud

= Cost model
= |n Self-managed DB: costs are fixed
= |n Cloud: You pay for amount of hardware used

- Less resources — Less cost
- 10 node cluster: 1h 54min — save $12.92/query on EC2

= User needs to justify the cost to the organization

17



Self-managed DB — Cloud

= Cost model
= |n Self-managed DB: costs are fixed
= |n Cloud: You pay for amount of hardware used

- Less resources — Less cost
- 10 node cluster: 1h 54min — save $12.92/query on EC2

= User needs to justify the cost to the organization

= Modifiying engine to support randomization
= Traditional DB: Notoriously difficult
= Cloud: Much simpler
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Self-managed DB — Cloud

= Cost model
= |n Self-managed DB: costs are fixed
= |n Cloud: You pay for amount of hardware used

- Less resources — Less cost
- 10 node cluster: 1h 54min — save $12.92/query on EC2

= User needs to justify the cost to the organization

= Modifiying engine to support randomization
= Traditional DB: Notoriously difficult
= Cloud: Much simpler

= Therefore, OLA for cloud is an interesting problem 1



Extend existing approaches

OLA over single machine

OLA over multiple machine

Why it won't work ?

How do we deal with those issues ?
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Extend existing approaches

OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks
= Blocks arrive in random order
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OLA over single machine

Confidence interval found using classical sampling theory

Tuples are bundled into blocks

Blocks arrive in random order

Example: Find SUM of below values

Note: True answer = 55

7,4,2
8,3

1,10, 6
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OLA over single machine

Confidence interval found using classical sampling theory

Tuples are bundled into blocks

Blocks arrive in random order

Example: Find SUM of below values — 59—
7,4,2 <
8, 3
1,10, 6
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OLA over single machine

Confidence interval found using classical sampling theory

Tuples are bundled into blocks

Blocks arrive in random order

Example: Find SUM of below values
7,4,2

I

Sample = {}

Estimate = Not available

8,3

1,10, 6
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OLA over single machine

Confidence interval found using classical sampling theory

Tuples are bundled into blocks

Blocks arrive in random order

Example: Find SUM of below values
7,4,2

I

Sample = {}

Estimate = Not available

8,3

1,10, 6
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OLA over single machine

Confidence interval found using classical sampling theory

Tuples are bundled into blocks

Blocks arrive in random order

Example: Find SUM of below values
7,4,2

I

Sample = {}

Estimate = Not available

8,3

1,10, 6
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

= Blocks arrive in random order

T
= Example: Find SUM of below values —59—
42
142 - |
1,10, 6

Sample = {13}
Estimate =13 *4/1 =52
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —59—
8, 3 7,_4,_2
142 : A
1,10, 6

Sample = {13}
Estimate =13 *4/1 =52
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —59—
8, 3 7,_4,_2
142 : A
1,10, 6

Sample = {13}
Estimate =13 *4/1 =52
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T

= Example: Find SUM of below values —59—
142 83 —
1,10, 6

Sample = {13, 11}
Estimate = (13 +11)*4/2=48
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

= Blocks arrive in random order

Y
= Example: Find SUM of below values gy
T4z 8s e
8-3
1,10, 6

Sample = {13, 11}
Estimate = (13 +11)*4/2=48
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
EEENEEN o Fré2
8-3
T 1,10, 6

Sample = {13, 11}
Estimate = (13 +11)*4/2=48
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
EEENEEN o Fré2
8-3
T 1,10, 6

Sample = {13, 11}
Estimate = (13 +11)*4/2=48
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T

= Example: Find SUM of below values —50—
742 83 59 —
1,10, 6

Sample = {13, 11, 14}
Estimate = (13 + 11 +14)*4 /3 =50.67
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
8-3
1,10,6 < —

Sample = {13, 11, 14}
Estimate = (13 + 11 +14)*4 /3 =50.67
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
8-3
T 1166
N —

Sample = {13, 11, 14}
Estimate = (13 + 11 +14)*4 /3 =50.67
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
8-3
T 1166
N —

Sample = {13, 11, 14}
Estimate = (13 + 11 +14)*4 /3 =50.67
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

T
= Example: Find SUM of below values —50—
8-3
T 1166
N —

Sample = {13, 11, 14}
Estimate = (13 + 11 +14)*4 /3 =50.67
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OLA over single machine

= Confidence interval found using classical sampling theory
= Tuples are bundled into blocks

» Blocks arrive in random order

= Example: Find SUM of below values —50—

742 83 59 1,106 _—

Sample = {13, 11, 14, 17}
Estimate = (13 +11+14 +17)*4 /4 =55
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Extend existing approaches

OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network
= Processing time for block can be large and highly variable
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network
= Processing time for block can be large and highly variable

So, instead of

= Example: Find SUM of below values @
742 83 59 1,106 —
1,10, 6

41



OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

1,10, 6
5,9
= Example: Find SUM of below values ;

|
- —

;

X axis = Processing Time
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

= Blocks that take

= |long time to process = RED

= Short time to process = Green
43



OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

1--_

Arrows = Random Time Instances (Polling blocks)
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

1--F
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

S
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

s
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

s
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

e
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

R
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OLA over multiple machines
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

e
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

T
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

T

Notice, there are more arrows on red region than green region
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OLA over multiple machines

= Blocks — Non-uniform — Size, Locality, Machine, Network

= Processing time for block can be large and highly variable

= Example: Find SUM of below values

T

Notice, there are more arrows on red region than green region

Inspection Paradox: At any random time t, (stochastically) you
will be processing those blocks that take long time
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Extend existing approaches

= Why it won't work ?

56



Why won't previous approach work ?

= Inspection paradox — At the time of estimation, processing
longer blocks

= Possible: correlation between processing time and value

= Eg: count query
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Why won't previous approach work ?

= Inspection paradox — At the time of estimation, processing
longer blocks

= Possible: correlation between processing time and value

= Eg: count query

= Biased estimates — current techniques won't work

58



Why won't previous approach work ?

= Inspection paradox — At the time of estimation, processing
longer blocks

N

This effect is found experimentally
in the paper: 'MapReduce Onling'

-

= Possible: corre

Al 4

= Eg: count quer

= Biased estimates — current techniques won't work
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Why won't previous approach work ?

Inspection paradox — At the time of estimation, processing
longer blocks

Possible: correlation between processing time and value

= Eg: count query

Biased estimates — current techniques won't work

Therefore, need to deal with inspection paradox in principled
fashion

60



Extend existing approaches

= How do we deal with those issues ?
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How do we deal with Inspection Paradox

= Capture timing information (i.e. processing time of block)

= Along with values

= |nstead of using classical sampling theory, we output estimates
using bayesian model that:

= Allows for correlation between processing time and values

= And also takes into account the processing time of current
block

62



Implementation
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Implementation Overview

= Framework for distributed systems: MapReduce

= Hadoop
- Staged processing — Ontine
= Hyracks (developed at UC Irvine)
- Pipelining — "Online”
- Architecture (and API) similar to Hadoop
- http://code.google.com/p/hyracks/

64


http://code.google.com/p/hyracks/

Implementation Overview

= Framework for distributed systems: MapReduce

= Hadoop
- Staged processing — Ontine
= Hyracks (developed at UC Irvine)
- Pipelining — "Online”
- Architecture (and API) similar to Hadoop
- http://code.google.com/p/hyracks/

= For estimates of "Aggregation”,
= 2 modifications to MapReduce (Hyracks)
= Bayesian Estimator
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Implementation Overview

= For estimates of "Aggregation”,

= 2 modifications to MapReduce (Hyracks)
= Bayesian Estimator
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http://code.google.com/p/hyracks/

Modifications to MapReduce (Hyracks)

= Master
= Maintains random ordering of blocks
- Logical not physical queue
= Assigns block from head of queue

= Block comes to head of queue — Timer starts (processing
time)

= Two intermediates set of files

= Data file — Values
= Metadata file — Timing information
= Shuffle phase of reducer

67



Modifications to MapReduce (Hyracks)

"~ Giint

select sum(stock price) from nasdaq_db group by company;

Blk1 MSFT 2

AAPL 4
Blk2 ORCL 3
Blk3 AAP Z

L
‘. ‘. Blk4 MSFT 2

BIk6 MSFT 2 ‘-

Blk7  AAPL 4 68




Modifications to MapReduce (Hyracks)

"~ Giint

Blk1 MSFT 2

AAPL 4
Blk2 ORCL 3
Blk3 AAPL 4
Blk4 MSFT 2

BlkS ORCL 3

Blk6 MSFT 2
Blk7  AAPL 4

69

Timet=0



Modifications to MapReduce (Hyracks)

[ Client Blk1 Blk2 Blk3 Blk4 Blk5 Blk6 Blk?7

Blk1 MSFT 2 - _
AAPL 4 Master maintains a logical

Blk2 ORCL 3 queue of the blocks

Bk3 AAPL 4

Blk4 MSFT 2

BlkS ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A

70
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

Blk1 MSFT 2 _
AAPL 4 Master randomizes the

Blk2 ORCL 3 queue

BIk3 AAPL 4

Blk4 MSFT 2

BlkS ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

Blk1 MSFT 2
AAPL 4 Master forks workers
Bk2 ORCL 3
Blk3 AAPL 4
Blk4 MSFT 2
Bk5 ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A

72
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

Blk1 MSFT
AAPL

Blk2 ORCL
Blk3 AAPL

Workers request for blocks

A 0 B~

Blk4 MSFT

Bk5 ORCL 3

N

Blk6 MSFT 2
Blk7  AAPL /A
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk2
Blk1 MSFT 2

AAPL 4 Masters reads head of
Blk2 ORCL 3 gueue and assigns it to
Blk3 AAPL 4 first worker

Blk4 MSFT 2

Bk5 ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

Blk1 MSFT

2
AAPL 4 Blk6 Worker1 starts reading

Bk2 ORCL 3 BIk6

Blk3 AAPL 4

Blk4 MSFT 2

BIksS ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A
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Modifications to MapReduce (Hyracks)

[ Client

Blk1

Blk2
Blk3

Blk4
BIkS

Blk6
Blk7

MSFT
AAPL

ORCL
AAPL

MSFT
ORCL

MSFT
AAPL

Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk2

T

<MSFT, 2> Assigns BlkS to Worker2

A 0 B~
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Modifications to MapReduce (Hyracks)

[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

T

Bk1 MSFT 2 |
AAPL 4 <MSFT, 2> Worker1 does its map task

Blk2 ORCL 3

Bk3 AAPL 4

Bk4 MSFT 2 BIkS

Bk5 ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A
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Modifications to MapReduce (Hyracks)

process
[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

Blk1 MSFT

2
<MSFT, 2>
AAPL 4 Shuffle Reduce
Blk2 ORCL 3 Phase Phase
Bk3 AAPL 4
<MSFT, 2>
Blkd MSFT 2 BlkS

Bk5 ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A

Timet=8



Modifications to MapReduce (Hyracks)

process
[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

\
\
Blk1 MSFT 2 \
SN Shuffe  Reduce |

Bk ORCL 3 Phase | Phase
Blk3 AAPL 4 \ ‘
<MSFT, 2> \

|
Reducer-MSFT
BIK5 ORCL 3 eaucer

Blk6 MSFT 2
Blk7  AAPL /A

79

|

|

|

|

|

| :

«
Blkd MSFT 2 BIkS |

|

|

|

|

|

|

Timet=9



Modifications to MapReduce (Hyracks)

process

Blk1

Blk2
Blk3

Blk4
BIkS

Blk6
Blk7

MSFT
AAPL

ORCL
AAPL

MSFT
ORCL

MSFT
AAPL

A 0 B~

N

Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk2

BIkS

Shuffle | Reduce
Phase " Phase
|

|
Reducer-MSFT

Randonin Time instance: Do estirﬁétion
Timet=9



Modifications to MapReduce (Hyracks)

process

Blk1

Blk2
Blk3

Blk4
BIkS

Blk6
Blk7

MSFT
AAPL

ORCL
AAPL

MSFT
ORCL

MSFT
AAPL

A 0 B~

N

Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk2

BIkS

{ > 3T
process

Shuffle | Reduce
Phase " Phase
|

|
Reducer-MSFT

Randonin Time instance: Do estirﬁgtion
Timet=9



Modifications to MapReduce (Hyracks)

process
[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

>

t 3 |
proces
| Reducer
Blk1 MSFT

|

|

2 |

SN Shuffe  Reduce |
Bk ORCL 3 Phase | Phase

Bk3 AAPL 4 | |

<MSFT, 2> |

Bk4 MSFT 2 2l

Reducer-M%FT

Bk5 ORCL 3

Blk6 MSFT 2
Blk7  AAPL /A

Randonin Time instance: Do estirﬁiation
Timet=9



Modifications to MapReduce (Hyracks)

process
[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

t >3 |
process
| Reducer
Blk1 MSFT

AAPL |

Shuffle | Reduce

Blk2 ORCL \ Phase " Phase
|
|

Blk3 AAPL
<MSFT, 2>

A 0 B~

|
Bk4 MSFT 2 BlkS

' Reducer-MSFT
Blks ORCL 3 | \ educer-MS
| |
|
|
|
|

Blk6 MSFT 2 | |

Blk7  AAPL 4 BIk6: <MSFT, 2> | |
Estimation
BIKG: t | cess = % |code Random Time instance: Do estinttion
Blk5: t >3 4 Timet=9

NnroccacQ



Modifications to MapReduce (Hyracks)

process
[ Client Blk6 Blk5 Blk3 Blk1 Blk4 Blk7 Blk?2

t >3 |
process
| Reducer
Blk1 MSFT

|

|

2 | |

SN / Shufffe  Reduce
Bk2 ORCL 3 - Phase | Phase

Bk3 AAPL 4 | ‘

<MSFT, 2> |

Bk4 MSFT 2 .@

|
Reducer-MSFT

|

|

|

BIK5 |
Bk5 ORCL 3 |
|

|

|

Blk6 MSFT 2

|
|
|
|
|
Blk7 AAPL 4 |

Estimation

[5.8, 8] code Random Time instance: Do estinfétion
7 Timet=9




Implementation Overview

= For estimates of "Aggregation”,

= 2 modifications to MapReduce (Hyracks)
= Bayesian Estimator
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Bayesian Estimator

= Why ? — To deal with Inspection Paradox
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Bayesian Estimator

= Why ? — To deal with Inspection Paradox
= How ?
= Allows for correlation between processing time and values

= And also take into account the processing time of current
block
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Bayesian Estimator

= Why ? — To deal with Inspection Paradox
= How ?
= Allows for correlation between processing time and values

= And also take into account the processing time of current
block

= |Implementation:

= C++ code using GNU Scientific Library and Minuit2
= |nput: Data file and Metadata file from Reducer
= Qutput: Confidence Interval — Eg:[995, 1005] with 95% prob
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information:T : .
process’  scheduling

= Value: X
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information:T : .
process’  scheduling

= Value: X
= Underlying distribution
= Classical sampling theory:  f(X)
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information: T : .
process’  scheduling

= Value: X
= Underlying distribution
= Classical sampling theory:  f(X)

. Our approach: fX, T )

process’  scheduling
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information: T : .
process’  scheduling

= Value: X
= Underlying distribution
= Classical sampling theory:  f(X)

. Our approach: fX, T )

process’  scheduling

- Correlation between X, T and T .
process scheduling
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information: T : .
process’  scheduling

= Value: X
= Underlying distribution
= Classical sampling theory:  f(X)

. Our approach: fX, T )

process’  scheduling

- Correlation between X, T and T .
process scheduling

SfX| T > 100000000, T = 22) # f(X)

process scheduling
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Bayesian Estimator (Model)

= Parameterized model:

= Timing Information: T : .
process’  scheduling

= Value: X
= Underlying distribution
= Classical sampling theory:  f(X)

. Our approach: fX, T )

process’  scheduling

- Correlation between X, T and T .
process scheduling

SfX| T > 100000000, T = 22) # f(X)

process scheduling

= Estimation using Bayesian Machinery

= Gibbs Sampler

- Developed probability (or update) equations o



Bayesian Estimator (Model)

= Parameterized model:

= limina Information:T T

= Valu
= Underly

= Clas

our Detailed discussion in the paper T )
scheduling

- Co

Juling

- f(X ) # f(X)

= Estimat ’

= Gibbs Sampler

- Developed probability (or update) equations »



Experiments
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= Experiment 1: (Real dataset)
= select sum(page count) from wikipedia log group by language
6 months Wikipedia log (220 GB compressed, 3960 blocks)

11 node cluster (4 disks, 4 cores, 12GB RAM)
Uniform configuration: Machines, Blocks

80 mappers and 10 reducer

97



= Hypothesis:

= Randomized Queue required
= Allow correlation between processing time and value
= Convergence of estimates

= Experiment 1: (Real dataset)
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Reading the figures

| /
= Experiment 1: (Real dataset)

Percentage of data processed >
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i Reading the figures
[ ] /

= Experiment 1: (Real dataset)
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Reading the figures

—

= Experiment 1: (Real dataset)

True answer
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= Randomized Queue required

= Experiment 1: (Real dataset)

= 10% of data processed — Non-randomized: Inaccurate estimate
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= Randomized Queue required

= Experiment 1: (Real dataset)

= 20% of data processed — Non-randomized: Inaccurate estimate
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= Randomized Queue required

= Experiment 1: (Real dataset)

= Non-randomized — Inaccurate estimates
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= Experiment 1: (Real dataset)
= Processing large block — no correlation detected

= Allow correlation between processing time and value
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= Experiment 1: (Real dataset)
= Correlation detected — With correlation: Slightly more accurate

= Allow correlation between processing time and value
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= Allow correlation between processing time and value

= Experiment 1: (Real dataset)

= Correlation detected — With correlation: Unbiased
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= Allow correlation between processing time and value

= Experiment 1: (Real dataset) — Uniform Configuration (low

correlation)
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= Allow correlation between processing time and value

= Experiment 1: (Real dataset) — Uniform Configuration (low

correlation) + As 1 data, likelihood takes over
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= Allow correlation between processing time and value

= Experiment 1: (Real dataset) — Uniform Configuration (low

correlation) + As 1 data, likelihood takes over — estimates similar
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= Convergence of estimates

= Experiment 1: (Real dataset)

pagecounts (*10"9)
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Conclusion

= OLA over MapReduce

= Statistically robust estimates

= Model that accounts for biases that can arise in distributed
environment

= Little modification to existing MapReduce architecture
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Thanks for your time and attention

Questions ?
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