

Online Aggregation for Large MapReduce Jobs

**Niketan Pansare¹, Vinayak Borkar²,
Chris Jermaine¹, Tyson Condie³**

¹Rice University, ²UC Irvine, ³Yahoo! Research

Outline

- Motivation
- Implementation
- Experiments
- Conclusion

Outline

- Motivation
- Implementation
- Experiments
- Conclusion

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

(Note: final answer for this query is **1000**)

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 1 second,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [0, 2000] with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 2 minutes,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [900, 1100] with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 4 minutes,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [950, 1040] with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 6 minutes,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [990, 1010] with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 10 minutes,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [995, 1005] with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After **30 minutes**,

- Conventional Database:
- With OLA extension:
 - Output range estimate: **[999, 1001.5]** with 95% probability

OLA example

```
select avg(stock_price) from nasdaq_db where company = 'xyz';
```

After 2 hours,

- Conventional Database:
 - Output final answer: 1000
- With OLA extension:
 - Output final answer: 1000

Benefit of OLA

- If acceptably accurate answer reached quickly, the query can be aborted

After 6 minutes,

- Conventional Database:
- With OLA extension:
 - Output range estimate: [990, 1015] with 95% probability

STOP EARLY !!!

Why Stop Early ?

- Save **human time** (1 hour 54 minutes)
 - 'Answer 1000' v/s 'Estimate 1002.5'
 - For exploratory apps
 - Inaccuracies in ETL process

Why Stop Early ?

- Save human time (1 hour 54 minutes)
 - 'Answer 1000' v/s 'Estimate 1002.5'
 - For exploratory apps
 - Inaccuracies in ETL process
- Save machine time → **Cost ↓**

Why Stop Early ?

- Save human time (1 hour 54 minutes)
 - 'Answer 1000' v/s 'Estimate 1002.5'
 - For exploratory apps
 - Inaccuracies in ETL process
- Save machine time → Cost ↓
- Very important when dealing with **large data**

Why Stop Early ?

- **Spatial Data**
 - **Online Aggregation**
 - Introduced in 1997
 - Significant research impact (606 citations)
 - ACM SIGMOD Test of Time Award
- **Visual Analytics**

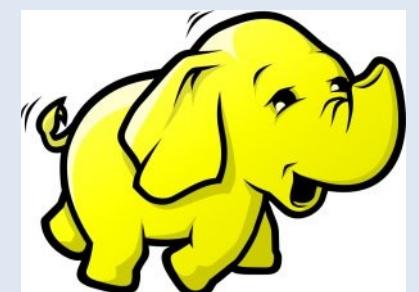
But, limited commercial impact
- Database market (self-managed)

Self-managed DB → Cloud

- Cost model
 - In Self-managed DB: costs are fixed
 - In Cloud: You pay for amount of hardware used
 - Less resources → Less cost
 - 10 node cluster: 1h 54min → save \$12.92/query on EC2
 - User needs to justify the cost to the organization

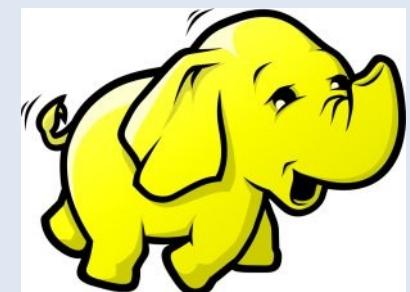
Self-managed DB → Cloud

- Cost model
 - In Self-managed DB: costs are fixed
 - In Cloud: You pay for amount of hardware used
 - Less resources → Less cost
 - 10 node cluster: 1h 54min → save \$12.92/query on EC2
 - User needs to justify the cost to the organization
- **Modifying engine** to support randomization
 - Traditional DB: Notoriously difficult
 - Cloud: Much simpler



Self-managed DB → Cloud

- Cost model
 - In Self-managed DB: costs are fixed
 - In Cloud: You pay for amount of hardware used
 - Less resources → Less cost
 - 10 node cluster: 1h 54min → save \$12.92/query on EC2
 - User needs to justify the cost to the organization
- Modifying engine to support randomization
 - Traditional DB: Notoriously difficult
 - Cloud: Much simpler
- Therefore, OLA for cloud is an interesting problem



Extend existing approaches

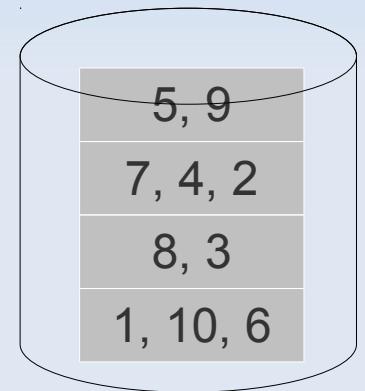
- OLA over single machine
- OLA over multiple machine
- Why it won't work ?
- How do we deal with those issues ?

Extend existing approaches

- OLA over single machine
 - Confidence interval found using classical sampling theory
 - Tuples are bundled into blocks
 - Blocks arrive in random order
- OLA over multiple machines
- Why it won't work ?
- How do we deal with those issues ?

OLA over single machine

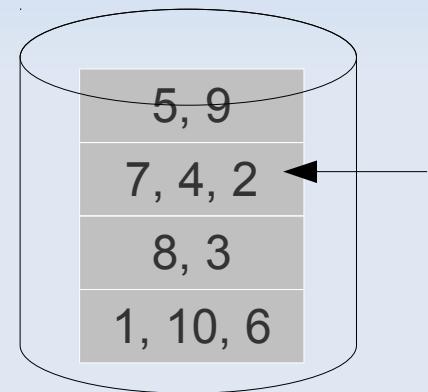
- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values



Note: True answer = 55

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in **random order**
- Example: Find SUM of below values

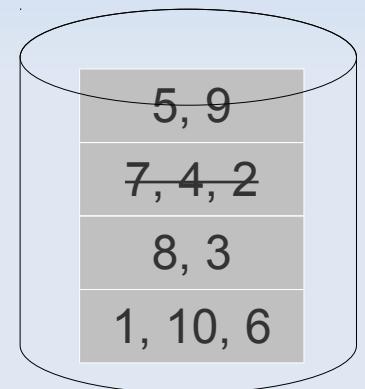


OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order

- **Example:** Find SUM of below values

7, 4, 2



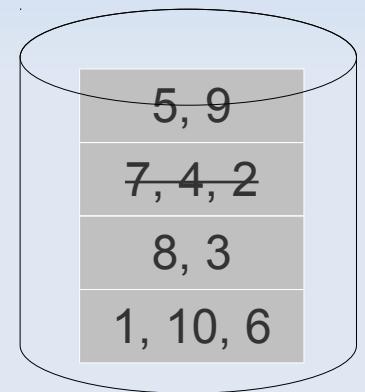
Sample = {}

Estimate = Not available

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2



Sample = {}

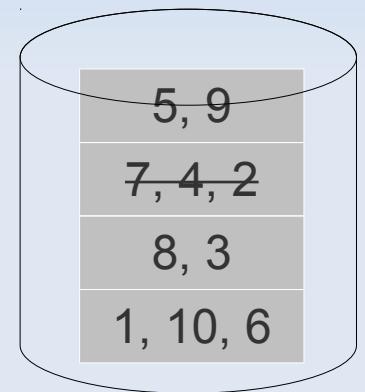
Estimate = Not available

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order

- **Example:** Find SUM of below values

7, 4, 2



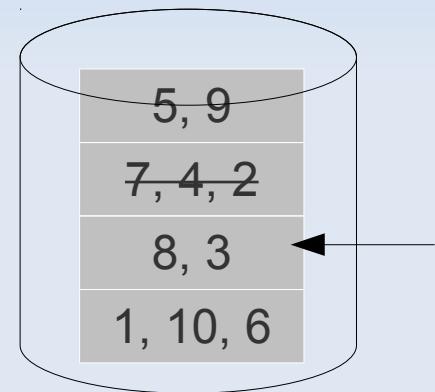
Sample = {}

Estimate = Not available

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in **random order**
- **Example:** Find SUM of below values

7, 4, 2



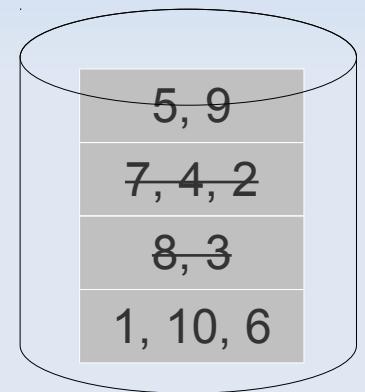
Sample = {13}

Estimate = $13 * 4 / 1 = 52$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3
---------	------



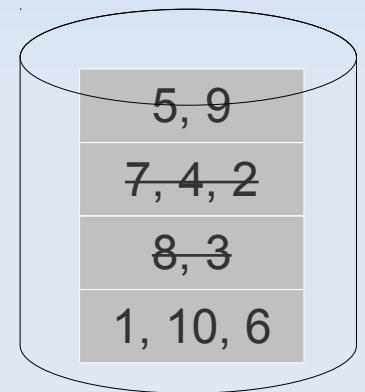
Sample = {13}

Estimate = $13 * 4 / 1 = 52$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3
---------	------



Sample = {13}

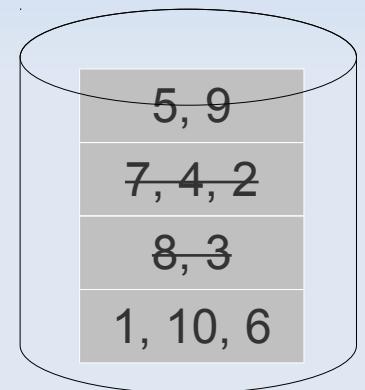
Estimate = $13 * 4 / 1 = 52$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order

- **Example:** Find SUM of below values

7, 4, 2	8, 3
---------	------



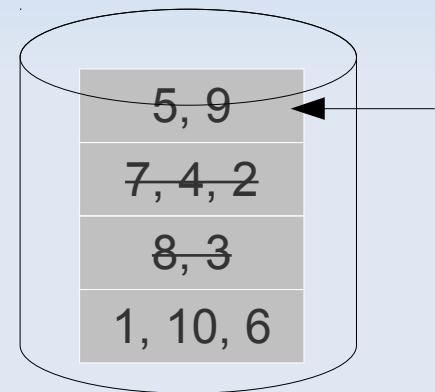
Sample = {13, 11}

Estimate = $(13 + 11) * 4 / 2 = 48$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in **random order**
- **Example:** Find SUM of below values

7, 4, 2	8, 3
---------	------



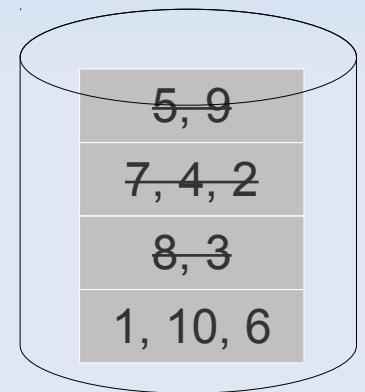
Sample = {13, 11}

Estimate = $(13 + 11) * 4 / 2 = 48$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9
---------	------	------



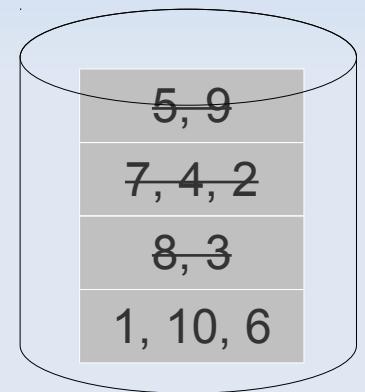
Sample = {13, 11}

Estimate = $(13 + 11) * 4 / 2 = 48$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9
---------	------	------



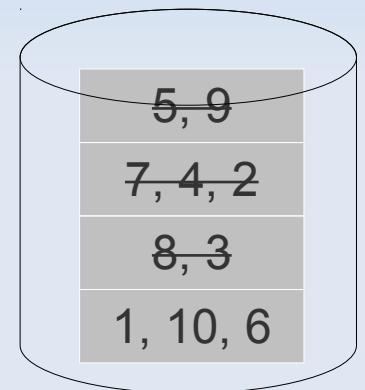
Sample = {13, 11}

Estimate = $(13 + 11) * 4 / 2 = 48$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9
---------	------	------



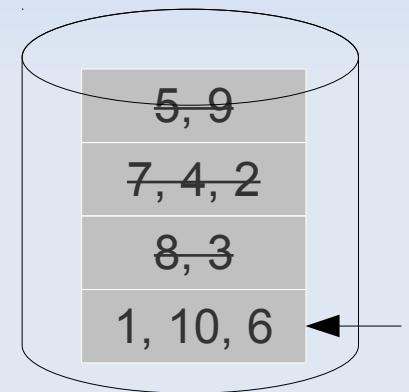
Sample = {13, 11, 14}

Estimate = $(13 + 11 + 14) * 4 / 3 = 50.67$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



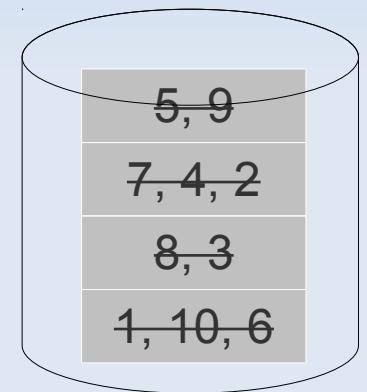
Sample = {13, 11, 14}

Estimate = $(13 + 11 + 14) * 4 / 3 = 50.67$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



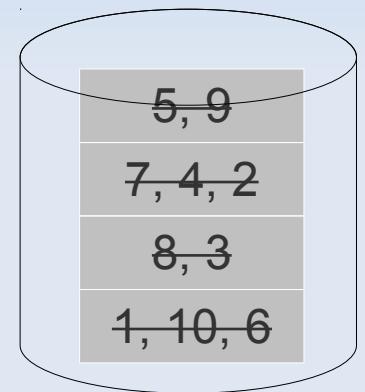
Sample = {13, 11, 14}

$$\text{Estimate} = (13 + 11 + 14) * 4 / 3 = 50.67$$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



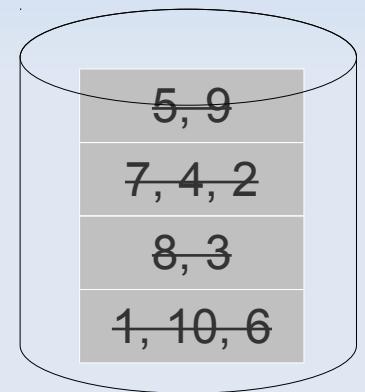
Sample = {13, 11, 14}

Estimate = $(13 + 11 + 14) * 4 / 3 = 50.67$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



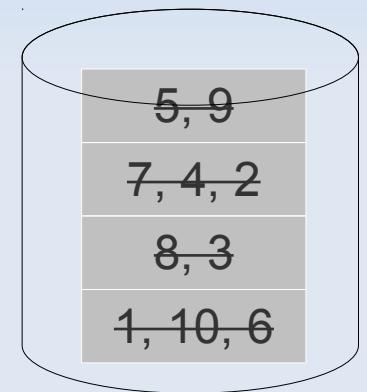
Sample = {13, 11, 14}

Estimate = $(13 + 11 + 14) * 4 / 3 = 50.67$

OLA over single machine

- Confidence interval found using classical sampling theory
- Tuples are bundled into blocks
- Blocks arrive in random order
- **Example:** Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



Sample = {13, 11, 14, 17}

Estimate = $(13 + 11 + 14 + 17) * 4 / 4 = 55$

Extend existing approaches

- OLA over single machine
 - Confidence interval found using classical sampling theory
 - Tuples are bundled into blocks
 - Blocks arrive in random order
- OLA over multiple machines
 - Blocks → Non-uniform → Size, Locality, Machine, Network
 - Processing time for block can be large and highly variable
- Why it won't work ?
- How do we deal with those issues ?

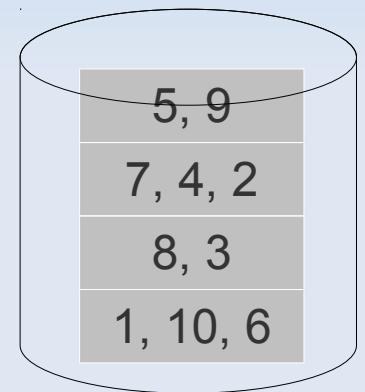
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable

So, instead of

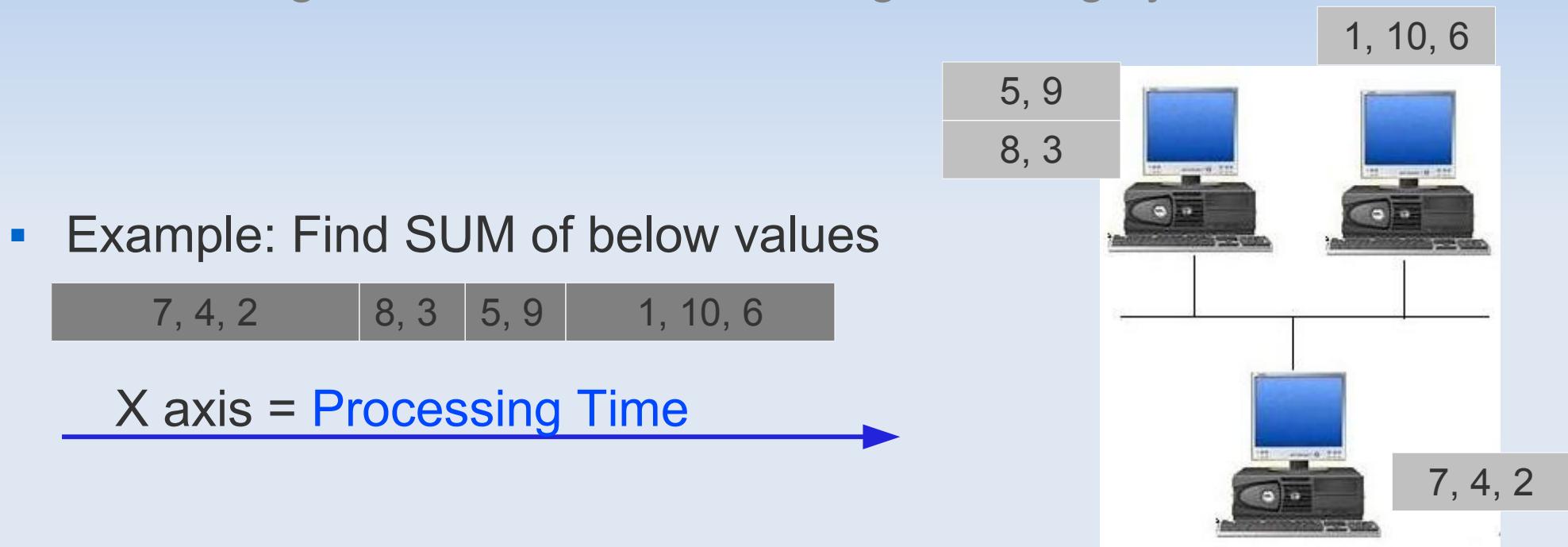
- Example: Find SUM of below values

7, 4, 2	8, 3	5, 9	1, 10, 6
---------	------	------	----------



OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable



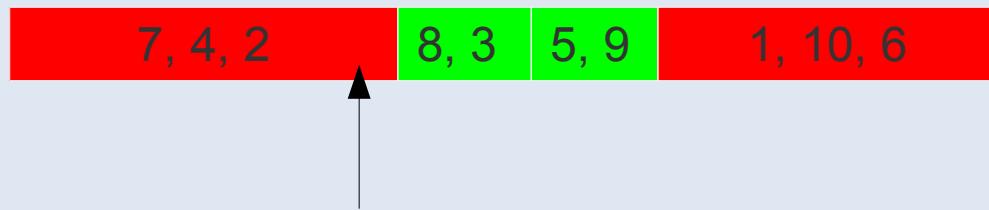
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values

- Blocks that take
 - long time to process = **RED**
 - Short time to process = **Green**

OLA over multiple machines

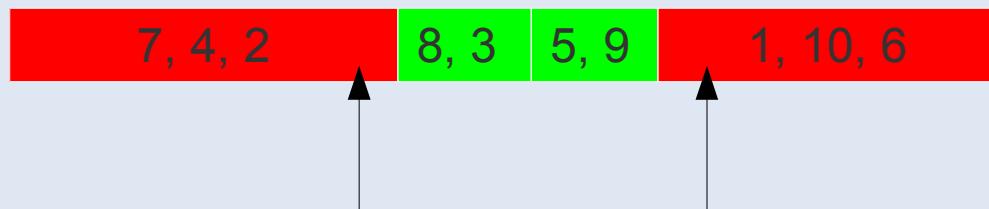
- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



Arrows = Random Time Instances (Polling blocks)

OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values

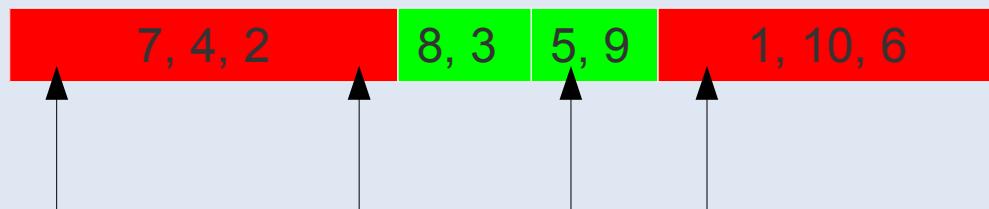


OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values

OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



OLA over multiple machines

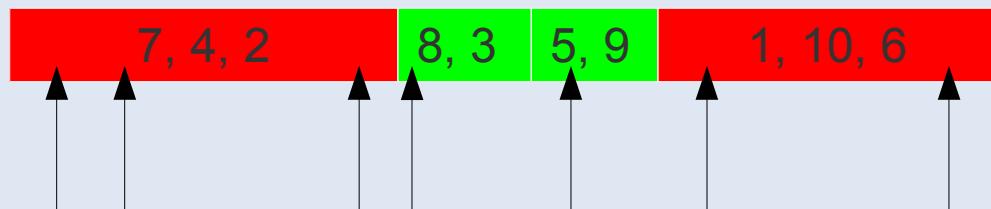
- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values

OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values

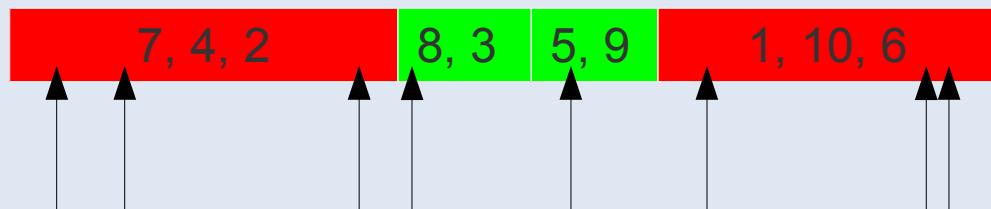
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



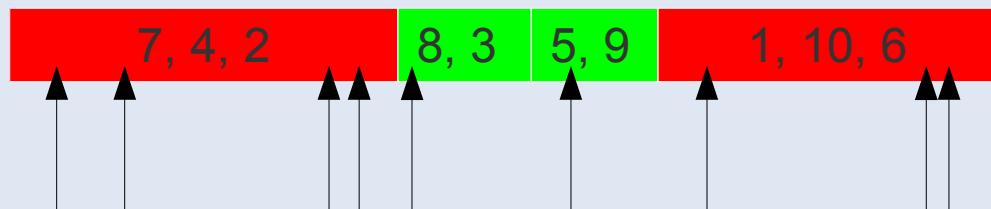
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



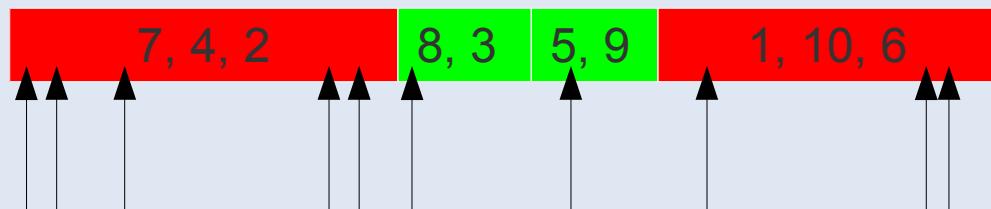
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



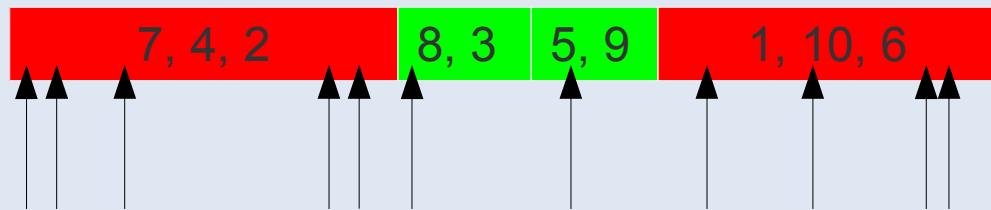
OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



OLA over multiple machines

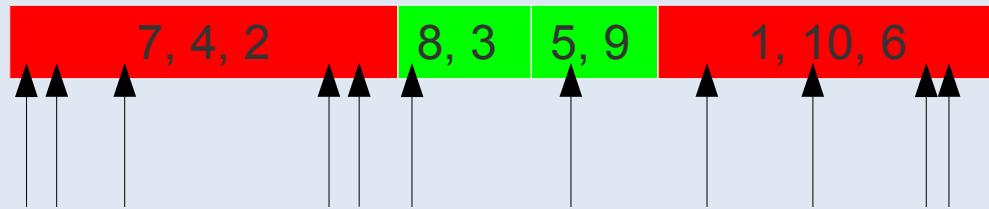
- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



Notice, there are more arrows on red region than green region

OLA over multiple machines

- Blocks → Non-uniform → Size, Locality, Machine, Network
- Processing time for block can be large and highly variable
- Example: Find SUM of below values



Notice, there are more arrows on red region than green region

Inspection Paradox: At any random time t , (stochastically) you will be **processing those blocks that take long time**

Extend existing approaches

- OLA over single machine
 - Confidence interval found using classical sampling theory
 - Tuples are bundled into blocks
 - Arrive in random order
- OLA over multiple machines
 - Blocks → Non-uniform → Size, Locality, Machine, Network
 - Processing time for block can be large and highly variable
- **Why it won't work ?**
- How do we deal with those issues ?

Why won't previous approach work ?

- Inspection paradox → At the time of estimation, processing longer blocks
- Possible: correlation between processing time and value
 - Eg: count query

Why won't previous approach work ?

- Inspection paradox → At the time of estimation, processing longer blocks
- Possible: correlation between processing time and value
 - Eg: count query
- **Biased estimates** → current techniques won't work

Why won't previous approach work ?

- Inspection paradox → At the time of estimation, processing longer blocks
- Possible: correlated data
 - Eg: count query
- **Biased estimates** → current techniques won't work

This effect is found **experimentally** in the paper: 'MapReduce Online'

Why won't previous approach work ?

- Inspection paradox → At the time of estimation, processing longer blocks
- Possible: correlation between processing time and value
 - Eg: count query
- Biased estimates → current techniques won't work
- Therefore, **need to deal with inspection paradox** in principled fashion

Extend existing approaches

- OLA over single machine
 - Confidence interval found using classical sampling theory
 - Tuples are bundled into blocks
 - Arrive in random order
- OLA over multiple machines
 - Blocks → Non-uniform → Size, Locality, Machine, Network
 - Processing time for block can be large and highly variable
- Why it won't work ?
- **How do we deal with those issues ?**

How do we deal with Inspection Paradox

- Capture timing information (i.e. processing time of block)
 - Along with values
- Instead of using classical sampling theory, we output estimates using bayesian model that:
 - Allows for correlation between processing time and values
 - And also takes into account the processing time of current block

Outline

- Motivation
- Implementation
- Experiments
- Conclusion

Implementation Overview

- Framework for distributed systems: MapReduce
 - Hadoop
 - Staged processing → ~~Online~~
 - Hyracks (developed at UC Irvine)
 - Pipelining → "Online"
 - Architecture (and API) similar to Hadoop
 - <http://code.google.com/p/hyracks/>
- For estimates of "Aggregation",
 - 2 modifications to MapReduce (Hyracks)
 - Bayesian Estimator

Implementation Overview

- Framework for distributed systems: MapReduce
 - Hadoop
 - Staged processing → ~~Online~~
 - Hyracks (developed at UC Irvine)
 - Pipelining → "Online"
 - Architecture (and API) similar to Hadoop
 - <http://code.google.com/p/hyracks/>
- For estimates of "**Aggregation**",
 - 2 modifications to MapReduce (Hyracks)
 - Bayesian Estimator

Implementation Overview

- Framework for distributed systems: MapReduce
 - Hadoop
 - Staged processing → Online
 - Hyracks (developed at UC Irvine)
 - Pipelining → "Online"
 - Architecture (and API) similar to Hadoop
 - <http://code.google.com/p/hyracks/>
- For estimates of "Aggregation",
 - **2 modifications to MapReduce (Hyracks)**
 - Bayesian Estimator

Modifications to MapReduce (Hyracks)

- Master
 - Maintains random ordering of blocks
 - Logical not physical queue
 - Assigns block from head of queue
 - Block comes to head of queue → Timer starts (processing time)
- Two intermediates set of files
 - Data file → Values
 - Metadata file → Timing information
 - Shuffle phase of reducer

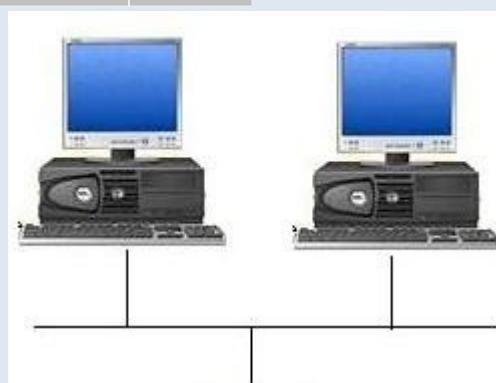
Modifications to MapReduce (Hyracks)

Client → Master

select sum(stock_price) from nasdaq_db group by company;

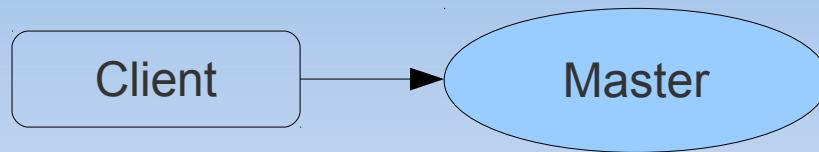
Blk1	MSFT	2
	AAPL	4
Blk2	ORCL	3
Blk3	AAPL	4

Blk4	MSFT	2
Blk5	ORCL	3



Blk6	MSFT	2
Blk7	AAPL	4

Modifications to MapReduce (Hyracks)

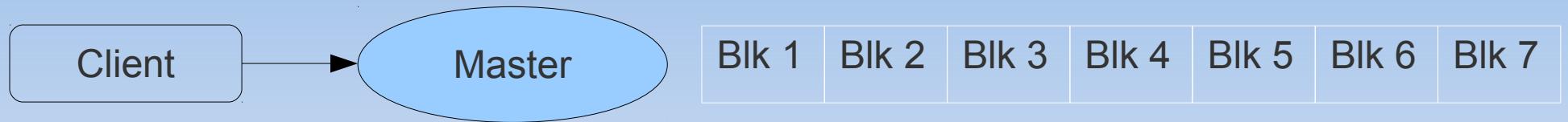


Blk1	MSFT	2
	AAPL	4
Blk2	ORCL	3
Blk3	AAPL	4

Blk4	MSFT	2
Blk5	ORCL	3

Blk6	MSFT	2
Blk7	AAPL	4

Modifications to MapReduce (Hyracks)



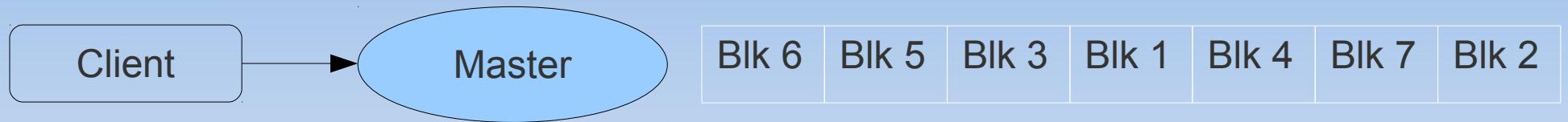
Blk1	MSFT AAPL	2 4
Blk2	ORCL	3
Blk3	AAPL	4

Master maintains a logical queue of the blocks

Blk4	MSFT	2
Blk5	ORCL	3

Blk6	MSFT	2
Blk7	AAPL	4

Modifications to MapReduce (Hyracks)



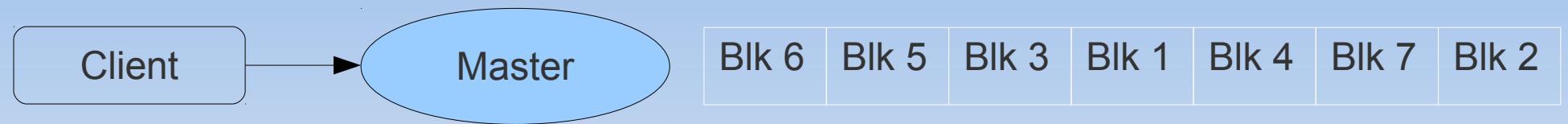
Blk1	MSFT AAPL	2 4
Blk2	ORCL	3
Blk3	AAPL	4

Master randomizes the queue

Blk4	MSFT	2
Blk5	ORCL	3

Blk6	MSFT	2
Blk7	AAPL	4

Modifications to MapReduce (Hyracks)



Blk1	MSFT AAPL	2 4
Blk2	ORCL	3
Blk3	AAPL	4

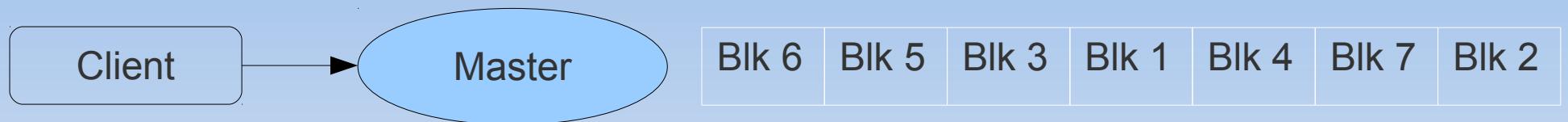
Master forks workers



Blk4	MSFT	2
Blk5	ORCL	3

Blk6	MSFT	2
Blk7	AAPL	4

Modifications to MapReduce (Hyracks)



Blk1	MSFT AAPL	2 4
Blk2	ORCL	3
Blk3	AAPL	4

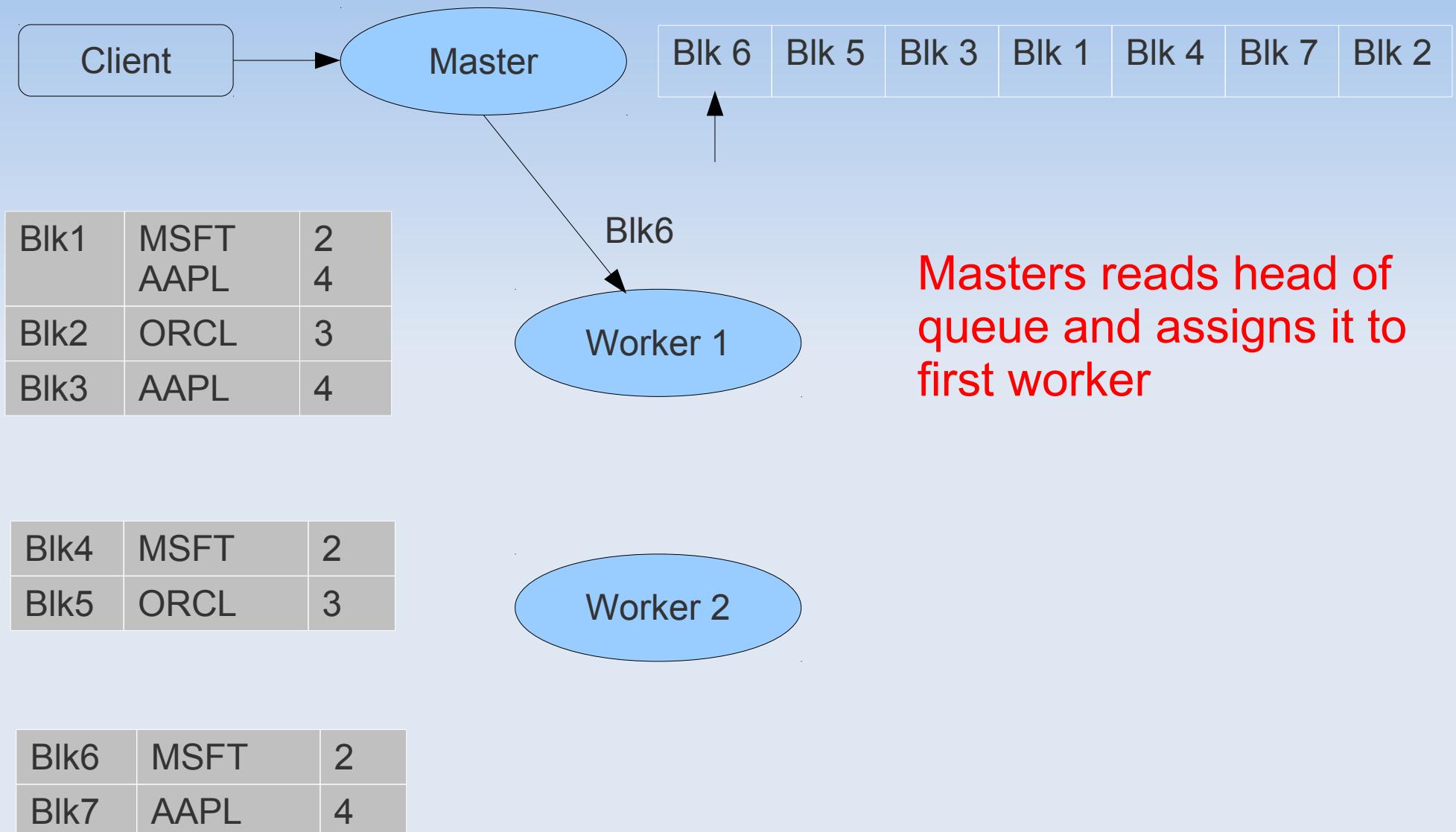
Workers request for blocks

Blk4	MSFT	2
Blk5	ORCL	3

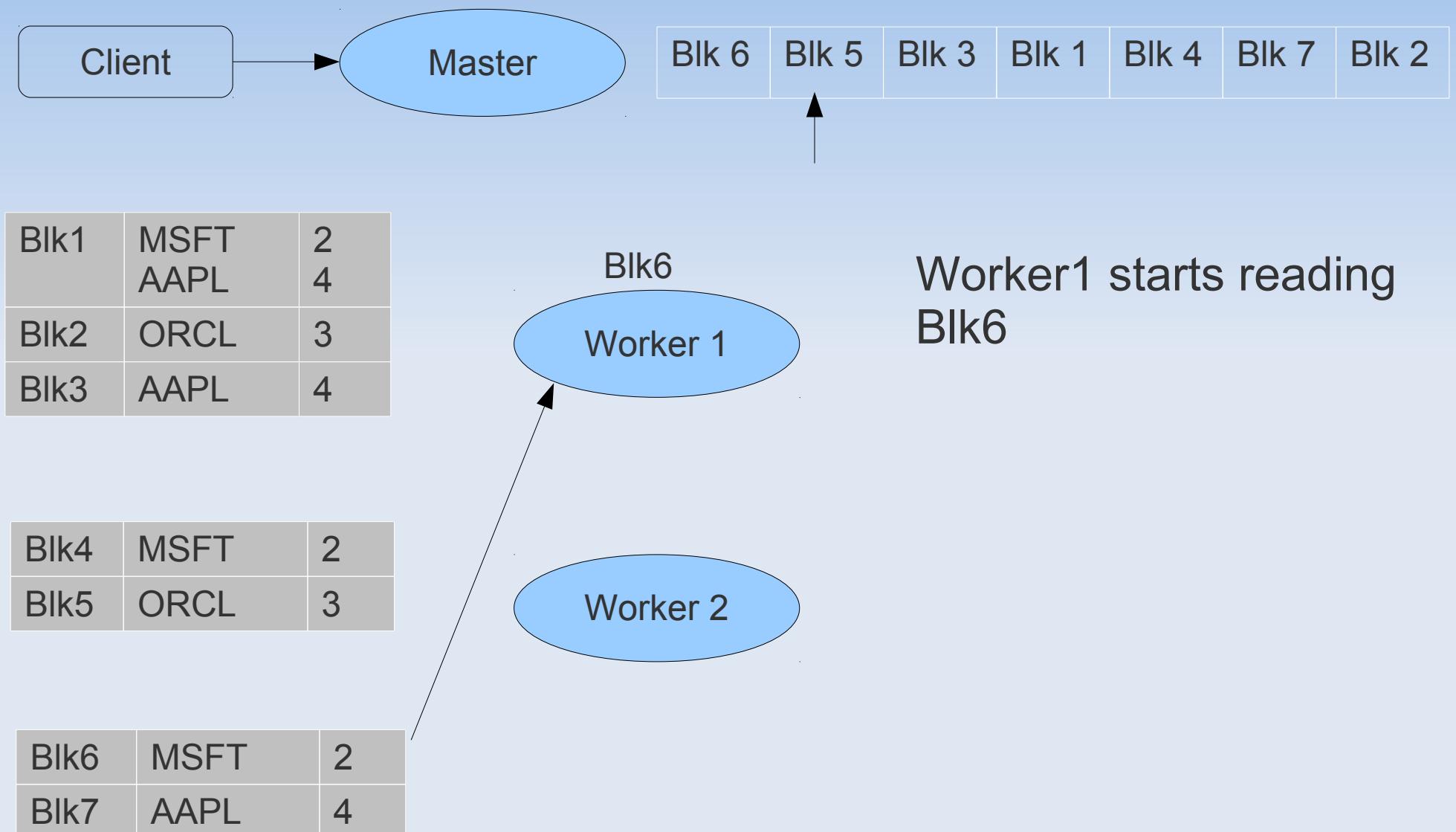


Blk6	MSFT	2
Blk7	AAPL	4

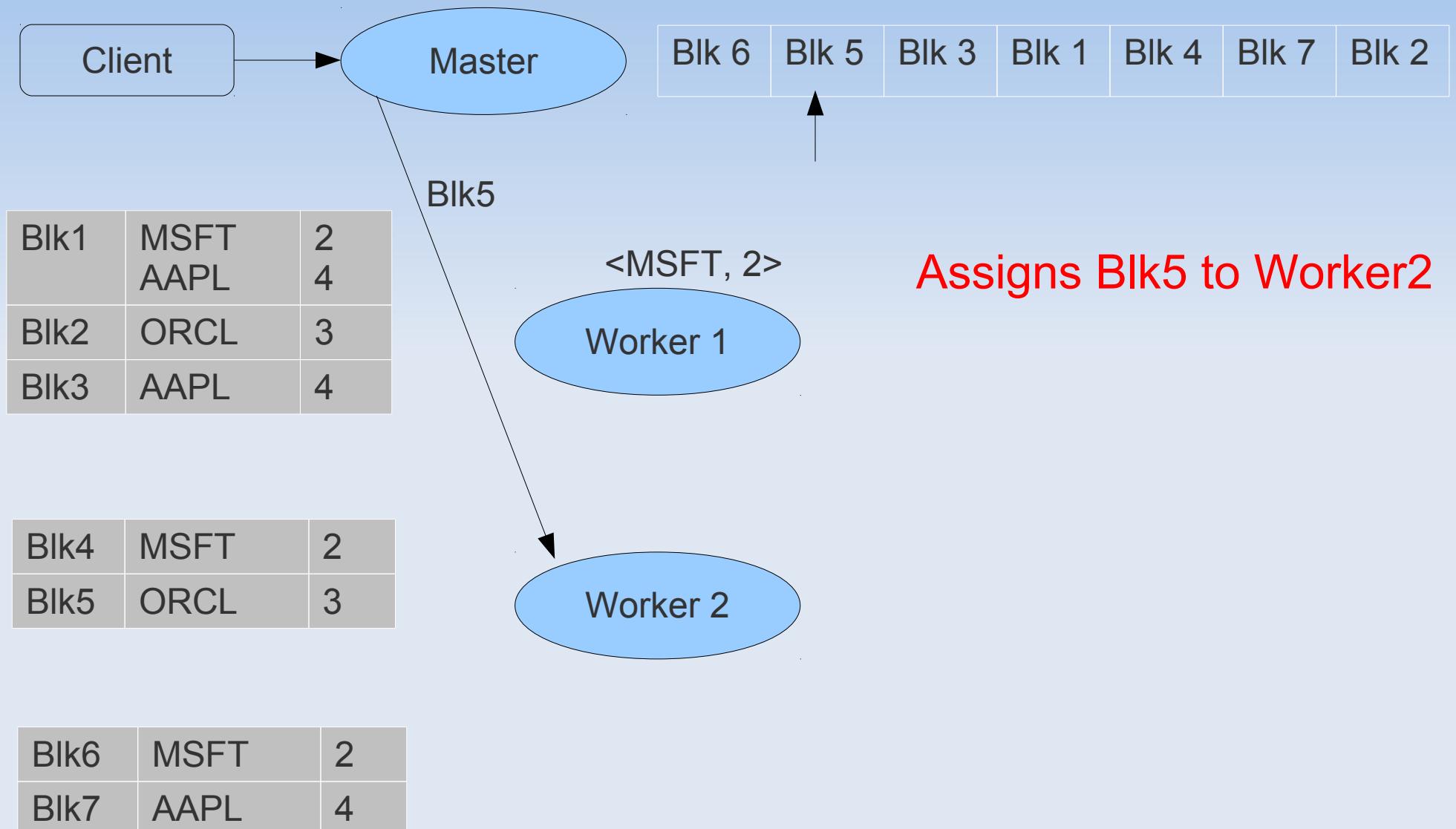
Modifications to MapReduce (Hyracks)



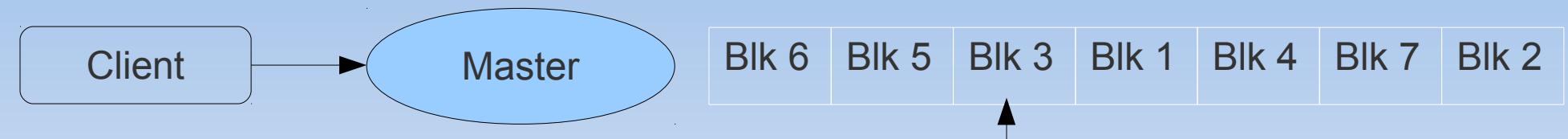
Modifications to MapReduce (Hyracks)



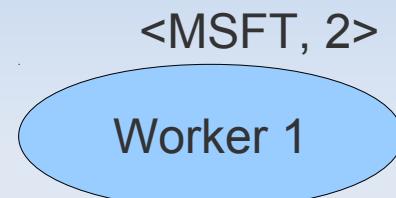
Modifications to MapReduce (Hyracks)



Modifications to MapReduce (Hyracks)

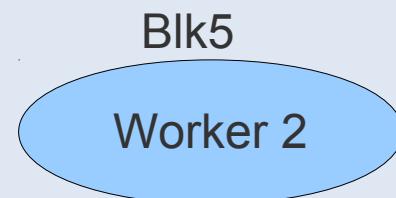


Blk1	MSFT AAPL	2 4
Blk2	ORCL	3
Blk3	AAPL	4



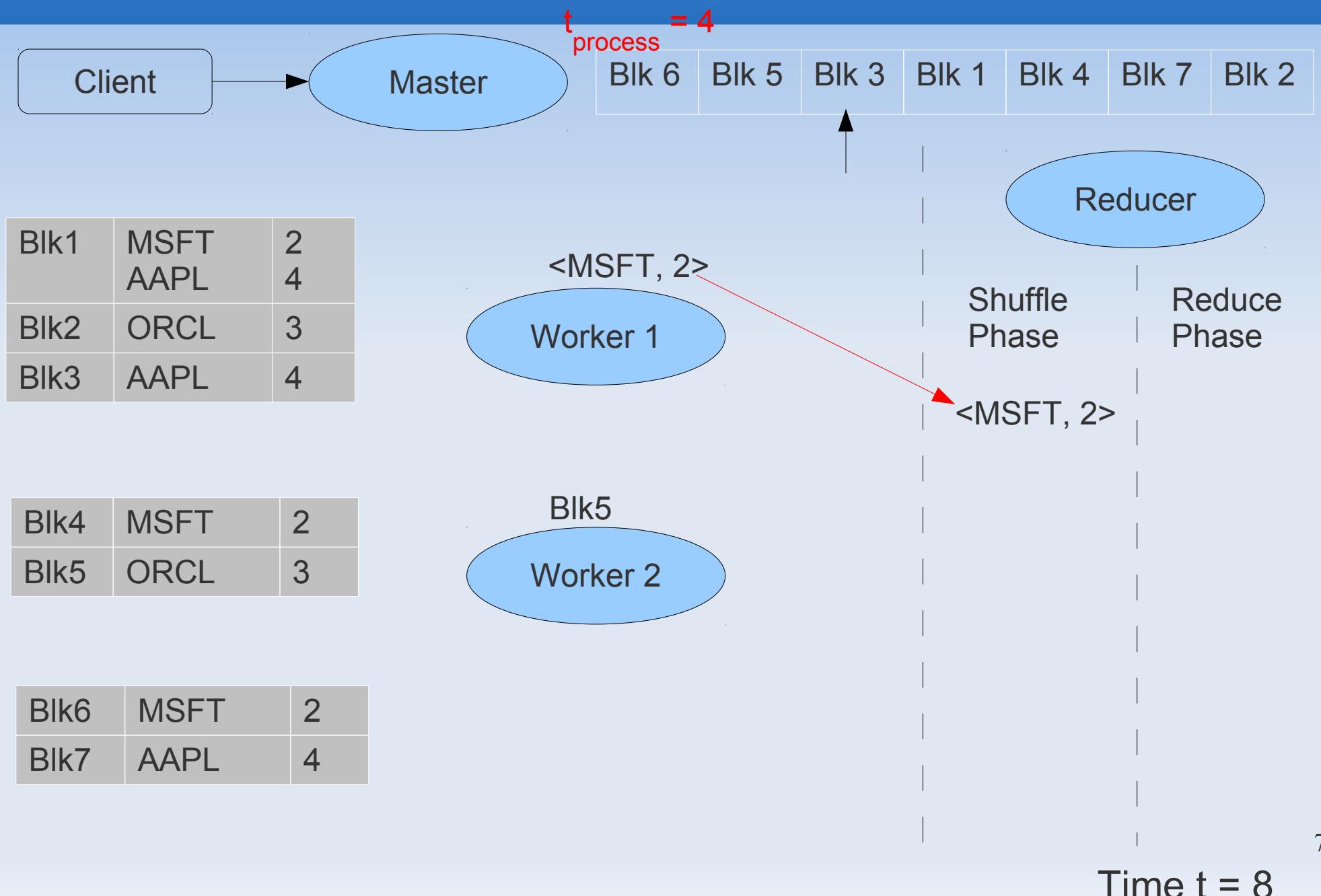
Worker1 does its map task

Blk4	MSFT	2
Blk5	ORCL	3

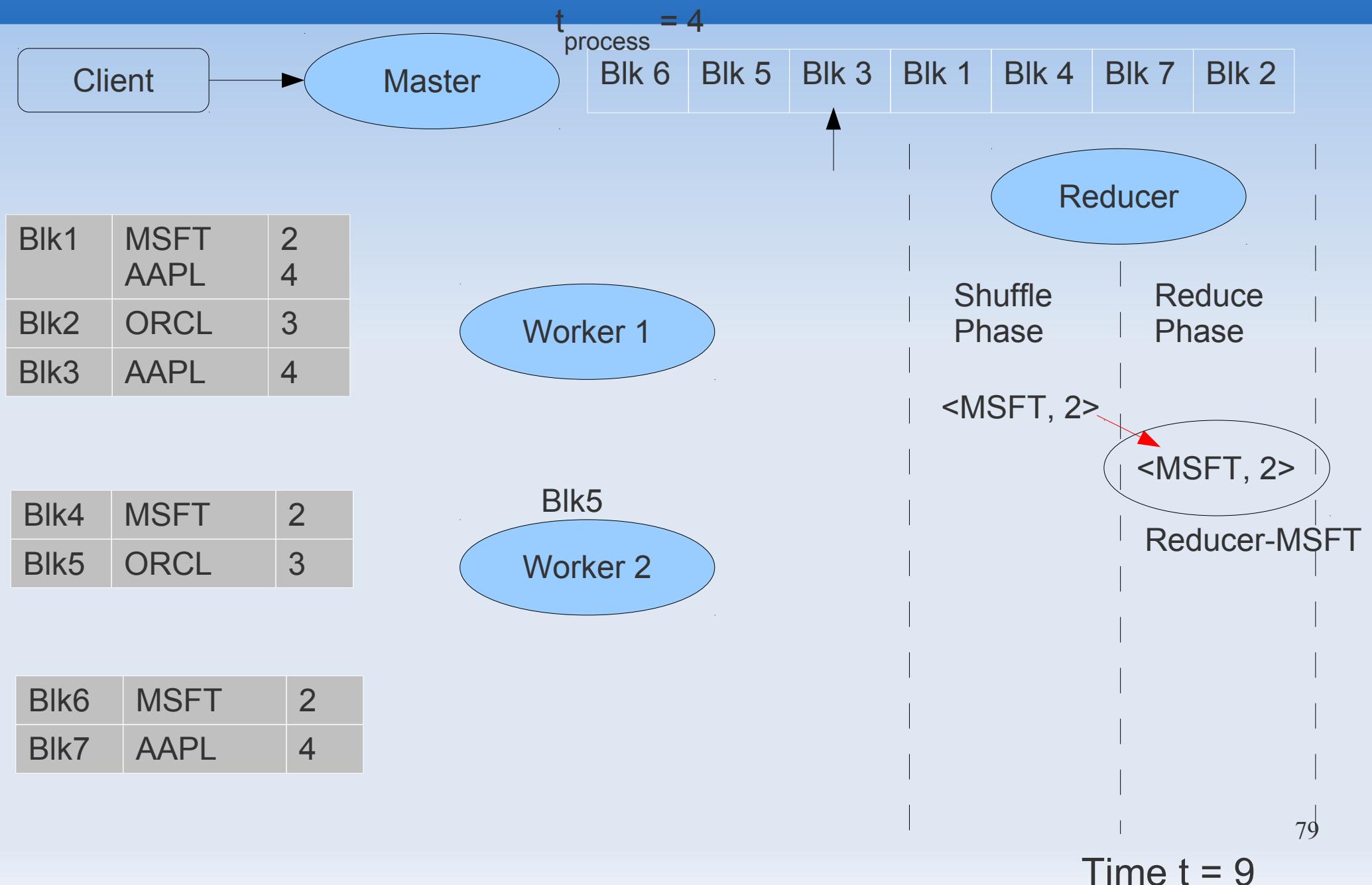


Blk6	MSFT	2
Blk7	AAPL	4

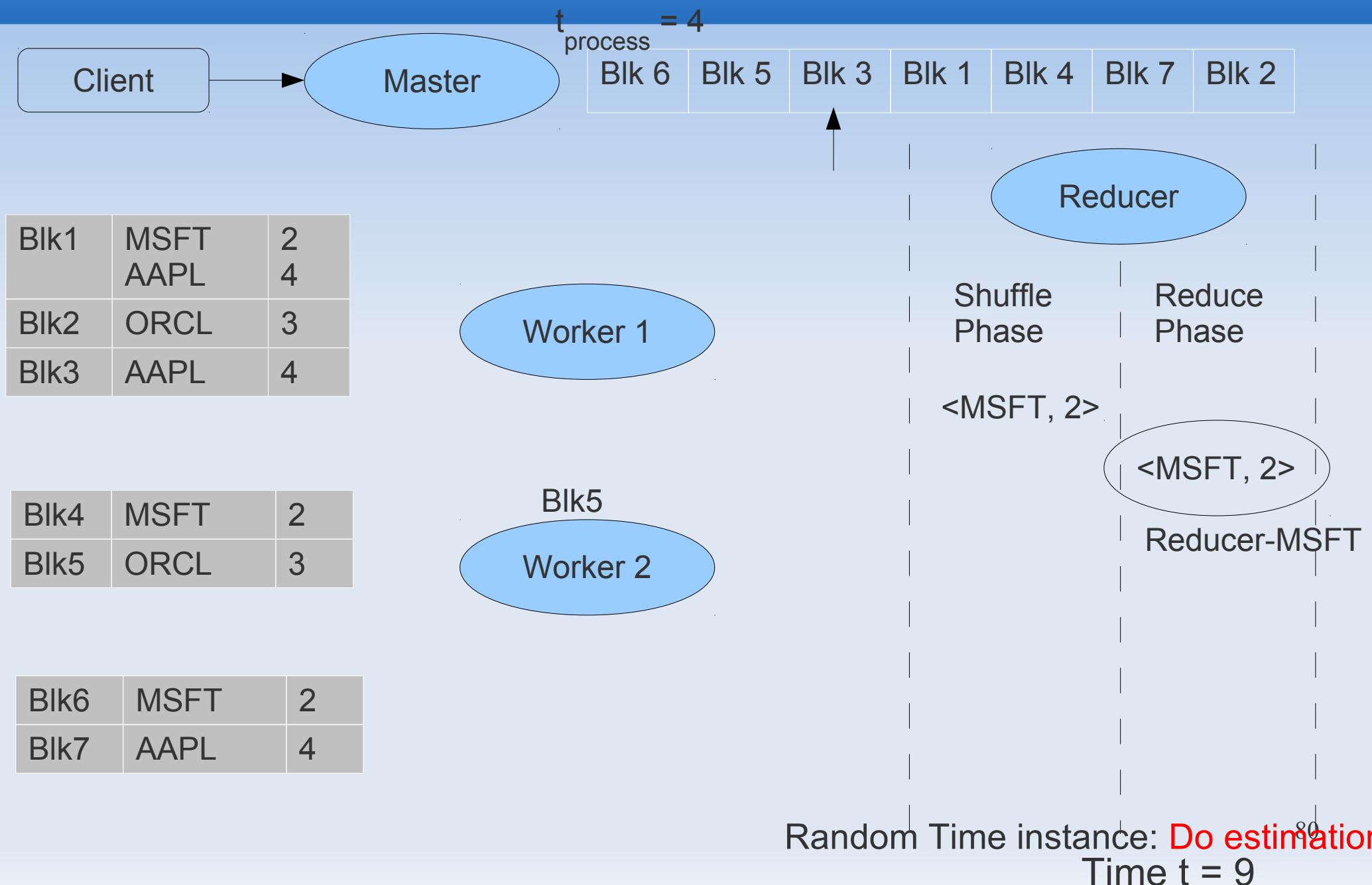
Modifications to MapReduce (Hyracks)



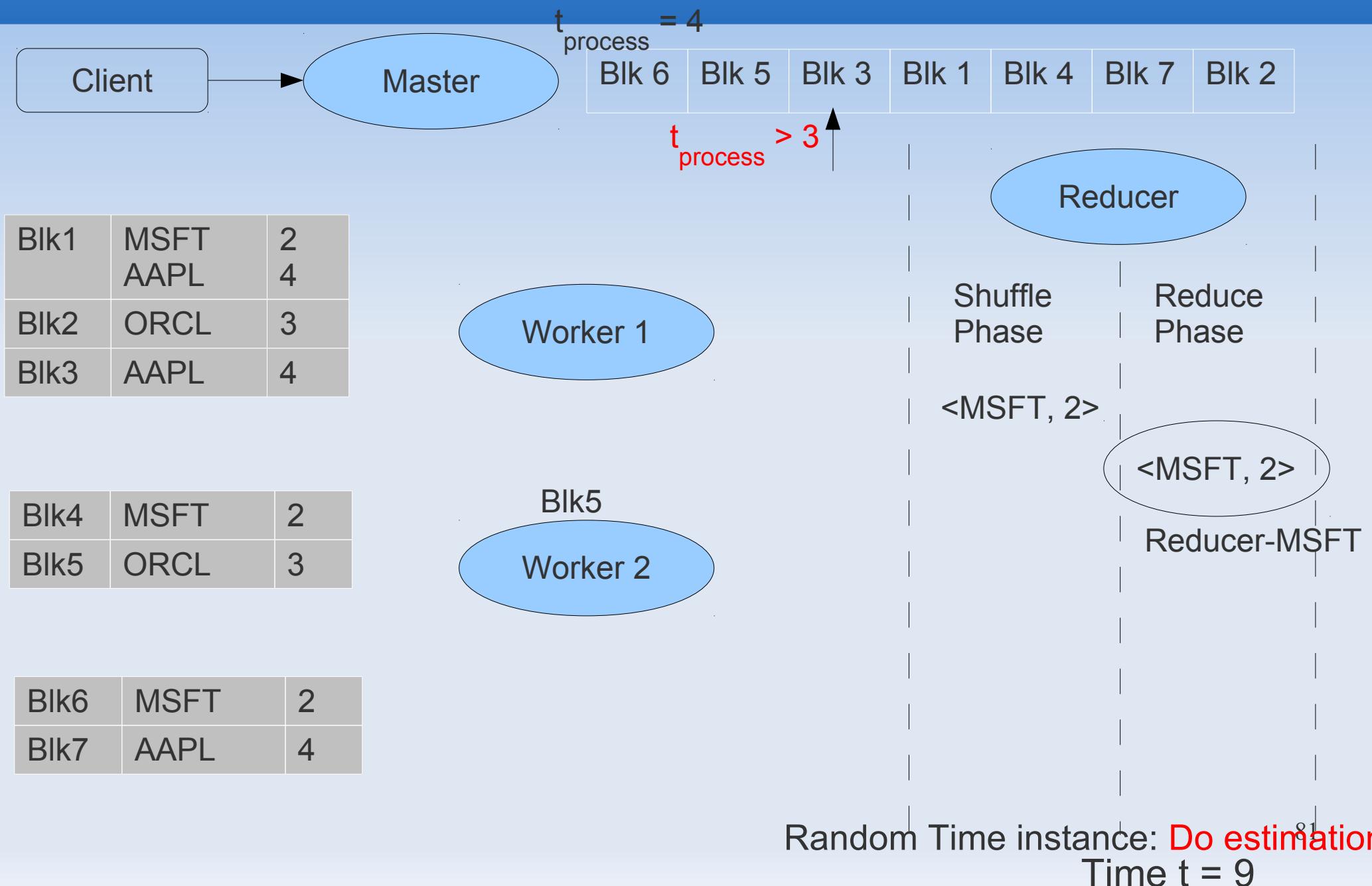
Modifications to MapReduce (Hyracks)



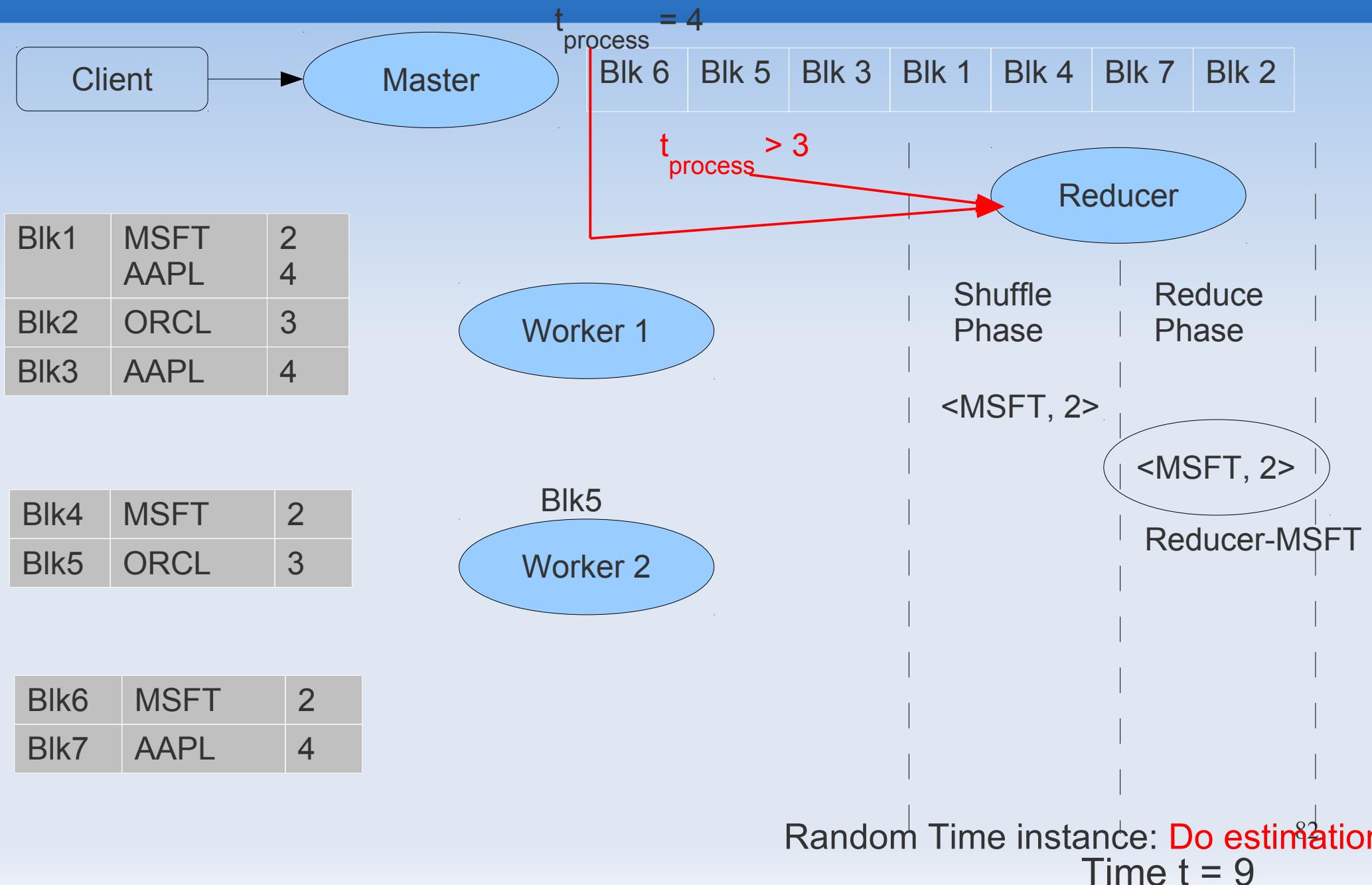
Modifications to MapReduce (Hyracks)



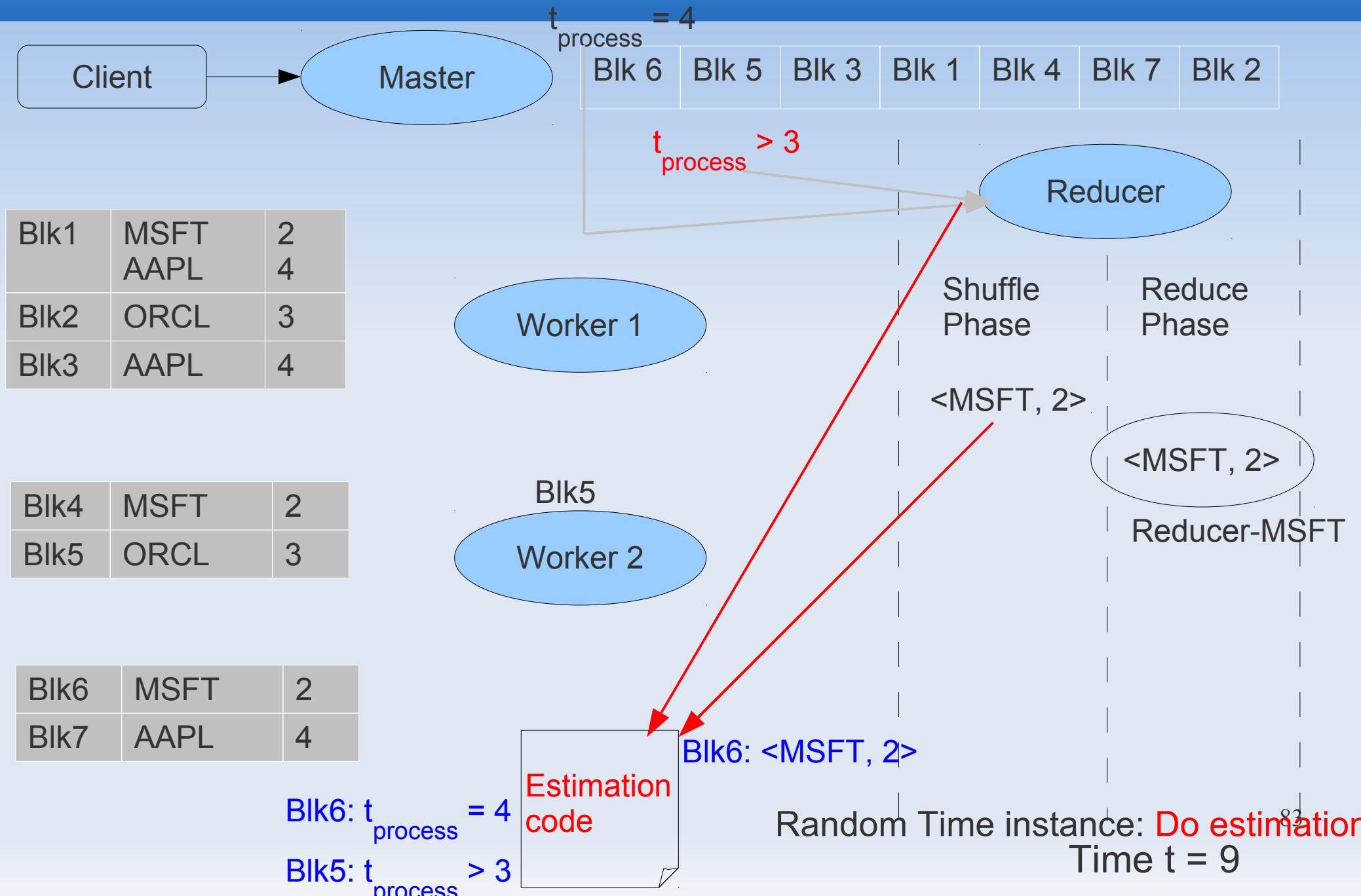
Modifications to MapReduce (Hyracks)



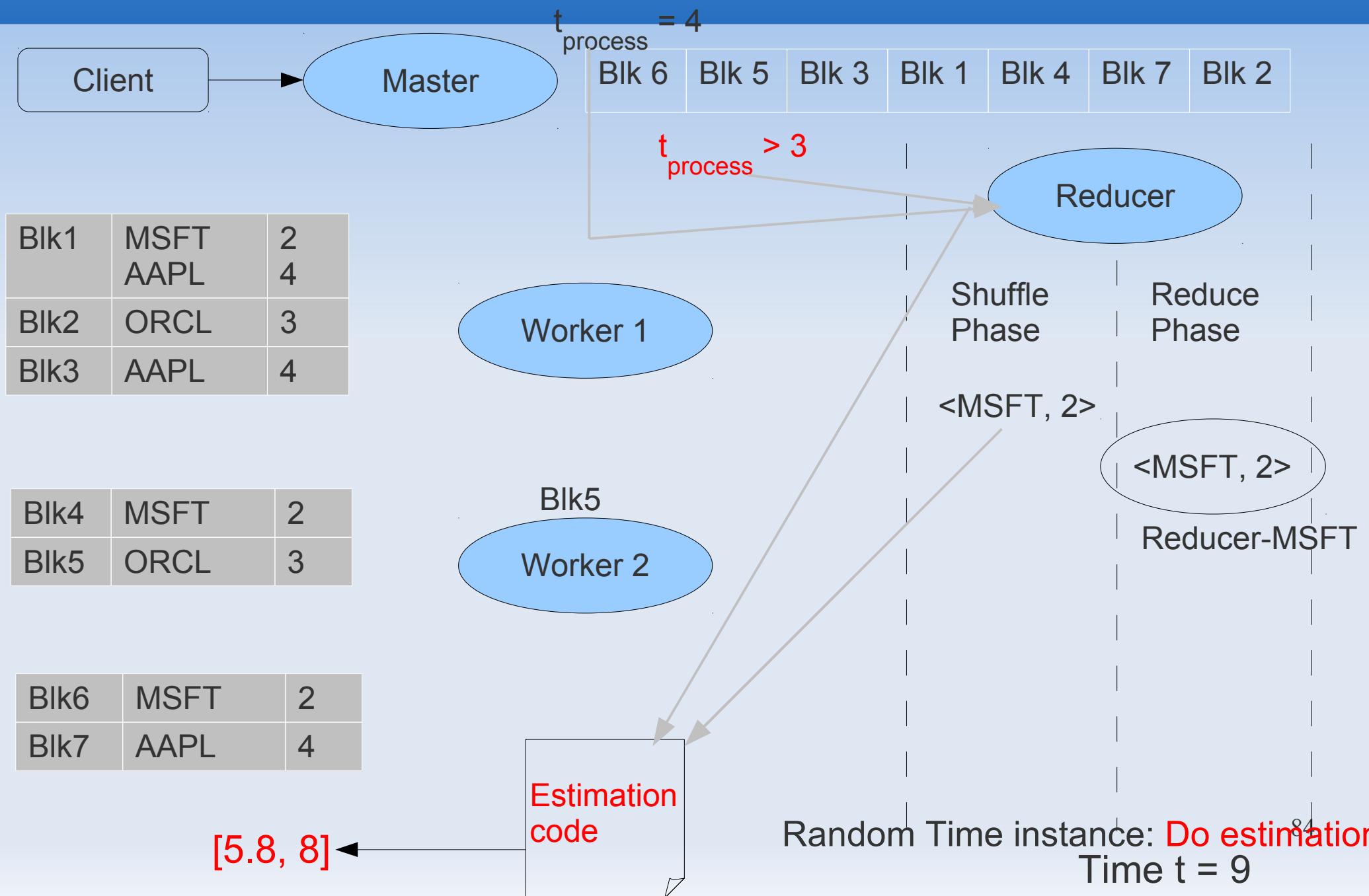
Modifications to MapReduce (Hyracks)



Modifications to MapReduce (Hyracks)



Modifications to MapReduce (Hyracks)



Implementation Overview

- Framework for distributed systems: MapReduce
 - Hadoop
 - Staged processing → **Online**
 - Hyracks (developed at UC Irvine)
 - Pipelining → "Online"
 - Architecture (and API) similar to Hadoop
 - <http://code.google.com/p/hyracks/>
- For estimates of "Aggregation",
 - 2 modifications to MapReduce (Hyracks)
 - **Bayesian Estimator**

Bayesian Estimator

- Why ? → To deal with Inspection Paradox

Bayesian Estimator

- Why ? → To deal with Inspection Paradox
- How ?
 - Allows for correlation between processing time and values
 - And also take into account the processing time of current block

Bayesian Estimator

- Why ? → To deal with Inspection Paradox
- How ?
 - Allows for correlation between processing time and values
 - And also take into account the processing time of current block
- Implementation:
 - C++ code using GNU Scientific Library and Minuit2
 - Input: Data file and Metadata file from Reducer
 - Output: Confidence Interval → Eg:[995, 1005] with 95% prob

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: T_{process} , $T_{\text{scheduling}}$
 - Value: X

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: $T_{\text{process}}, T_{\text{scheduling}}$
 - Value: X
- Underlying distribution
 - Classical sampling theory: $f(X)$

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: $T_{\text{process}}, T_{\text{scheduling}}$
 - Value: X
- Underlying distribution
 - Classical sampling theory: $f(X)$
 - Our approach: $f(X, T_{\text{process}}, T_{\text{scheduling}})$

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: $T_{\text{process}}, T_{\text{scheduling}}$
 - Value: X
- Underlying distribution
 - Classical sampling theory: $f(X)$
 - Our approach: $f(X, T_{\text{process}}, T_{\text{scheduling}})$
 - Correlation between X, T_{process} and $T_{\text{scheduling}}$

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: $T_{\text{process}}, T_{\text{scheduling}}$
 - Value: X
- Underlying distribution
 - Classical sampling theory: $f(X)$
 - Our approach: $f(X, T_{\text{process}}, T_{\text{scheduling}})$
 - Correlation between X, T_{process} and $T_{\text{scheduling}}$
 - $f(X | T_{\text{process}} > 100000000, T_{\text{scheduling}} = 22) \neq f(X)$

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information: $T_{\text{process}}, T_{\text{scheduling}}$
 - Value: X
- Underlying distribution
 - Classical sampling theory: $f(X)$
 - Our approach: $f(X, T_{\text{process}}, T_{\text{scheduling}})$
 - Correlation between X, T_{process} and $T_{\text{scheduling}}$
 - $f(X | T_{\text{process}} > 100000000, T_{\text{scheduling}} = 22) \neq f(X)$
- Estimation using Bayesian Machinery
 - Gibbs Sampler
 - Developed probability (or update) equations

Bayesian Estimator (Model)

- Parameterized model:
 - Timing Information $\cdot T$
 - Value $\cdot T$
- Underlying process
 - Classification
 - Our model
 - Configuration
 - $f(X)$
- Estimation
 - Gibbs Sampler
 - Developed probability (or update) equations

Detailed discussion in the paper

$T_{\text{scheduling}}$)

scheduling

) $\neq f(X)$

Outline

- Motivation
- Implementation
- Experiments
- Conclusion

Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - `select sum(page_count) from wikipedia_log group by language`
 - 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 - 11 node cluster (4 disks, 4 cores, 12GB RAM)
 - Uniform configuration: Machines, Blocks
 - 80 mappers and 10 reducer

Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - `select sum(page_count) from wikipedia_log group by language`
 - 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 - 11 node cluster (4 disks, 4 cores, 12GB RAM)
 - Uniform configuration: Machines, Blocks
 - 80 mappers and 10 reducer

Experiments

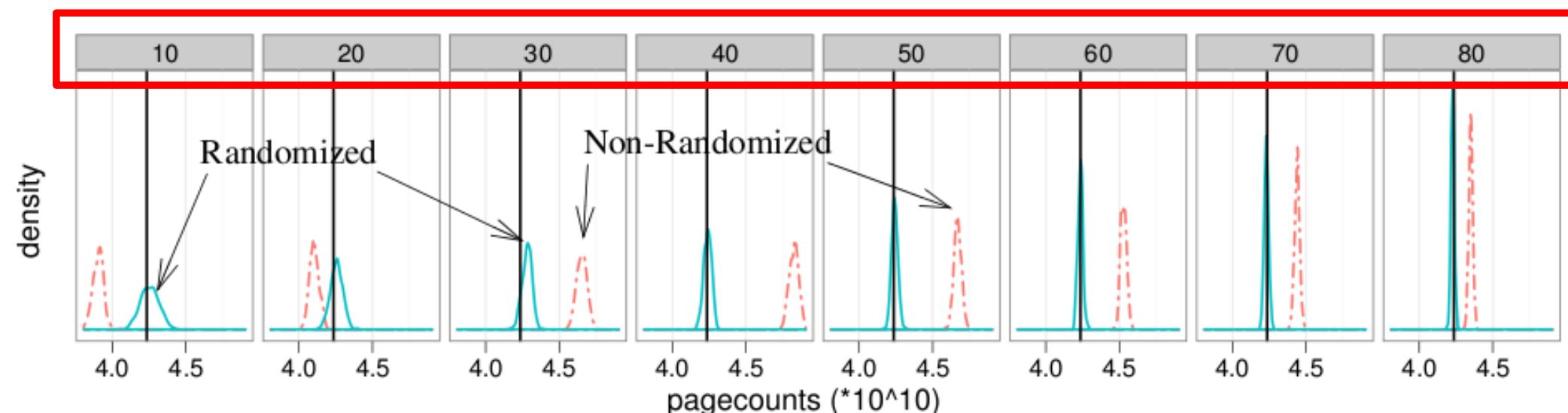
- Hypothesis:

- Randomized Queue reduces variance
- Allow correlation between pagecounts and processing time and value
- Convergence of estimates

- Experiment 1: (Real dataset)

Reading the figures

Percentage of data processed



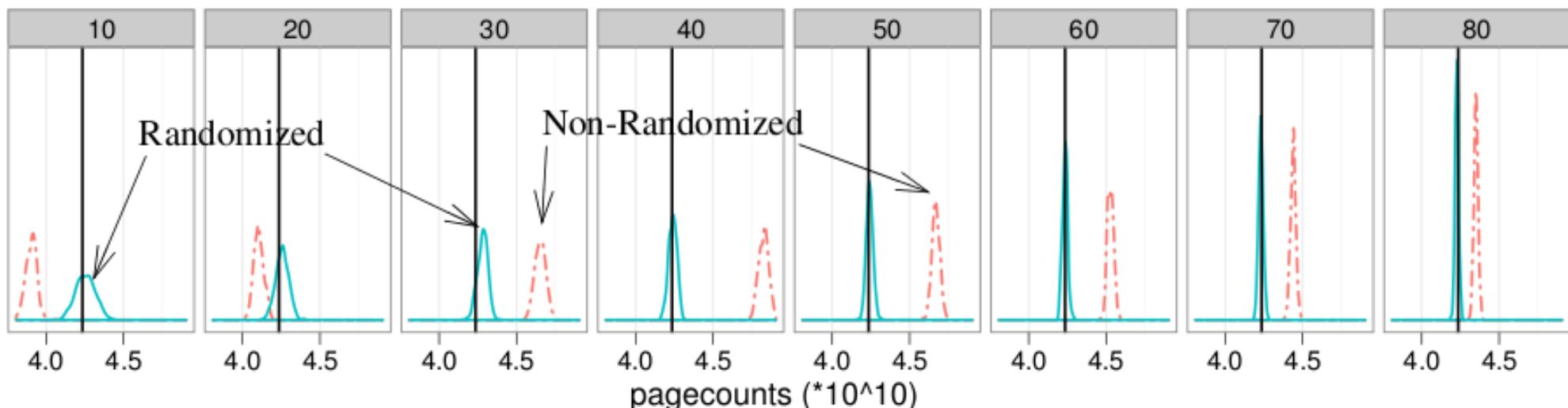
Experiments

- Hypothesis:

- Randomized Queue reduces variance
- Allow correlation between pagecounts and execution time and value
- Convergence of estimates

- Experiment 1: (Real dataset)

Reading the figures



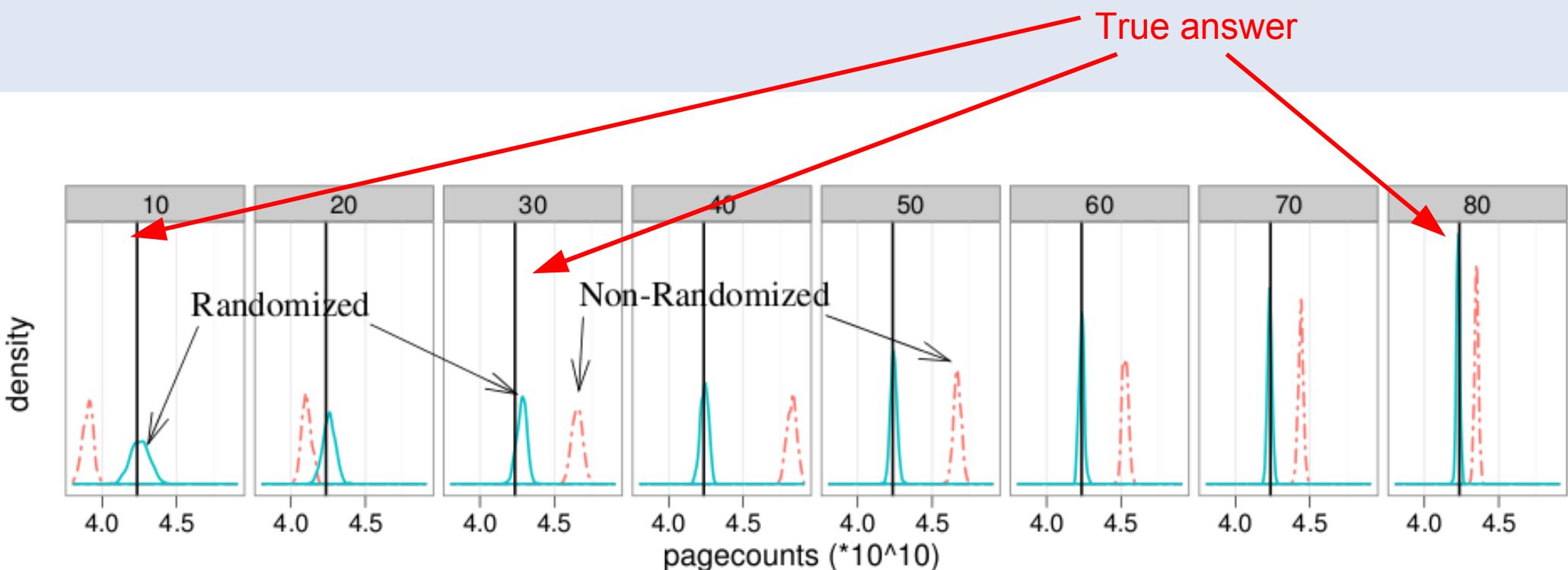
Experiments

- Hypothesis:

- Randomized Queue reduces variance
- Allow correlation between pagecounts and execution time and value
- Convergence of estimates

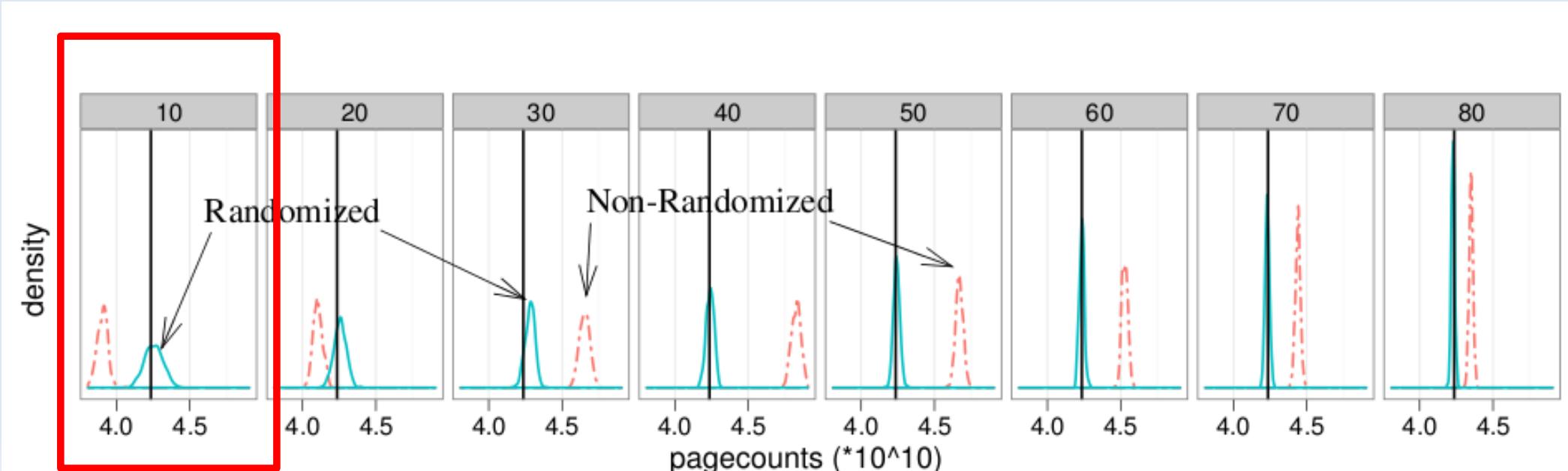
- Experiment 1: (Real dataset)

Reading the figures



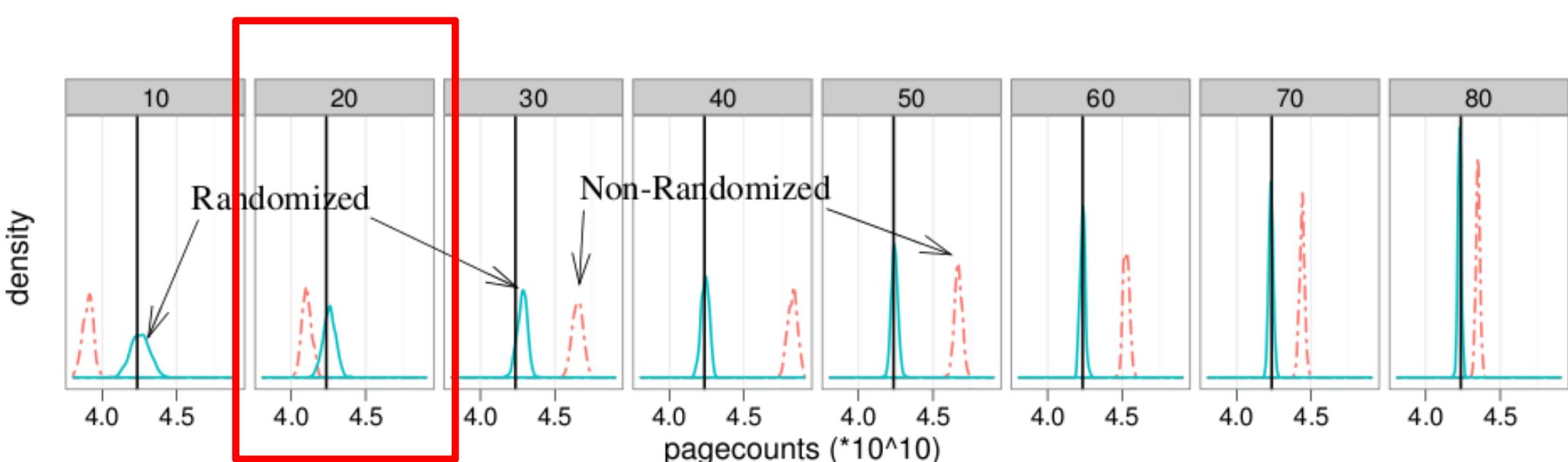
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - 10% of data processed → Non-randomized: Inaccurate estimate



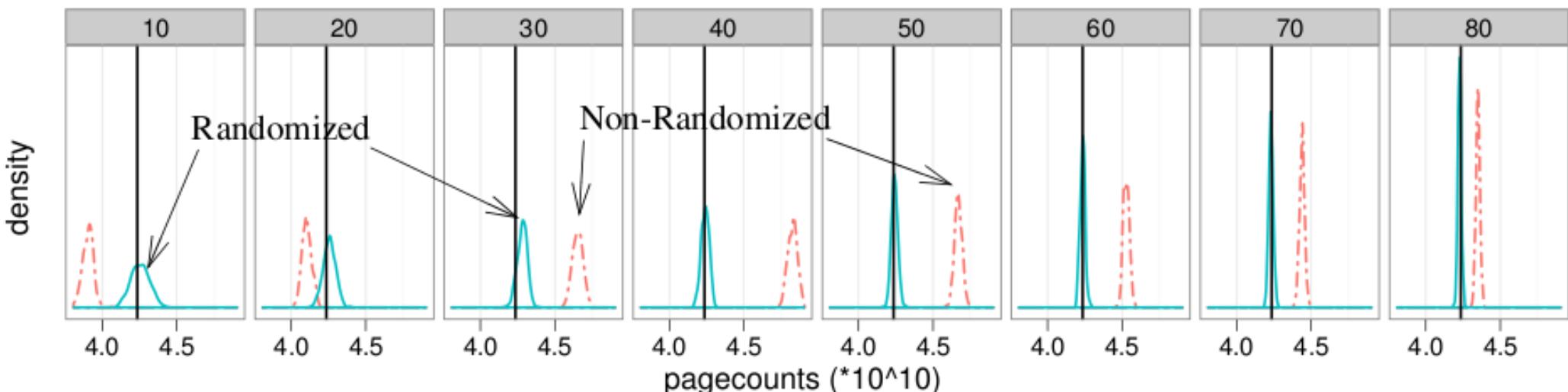
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - 20% of data processed → Non-randomized: Inaccurate estimate



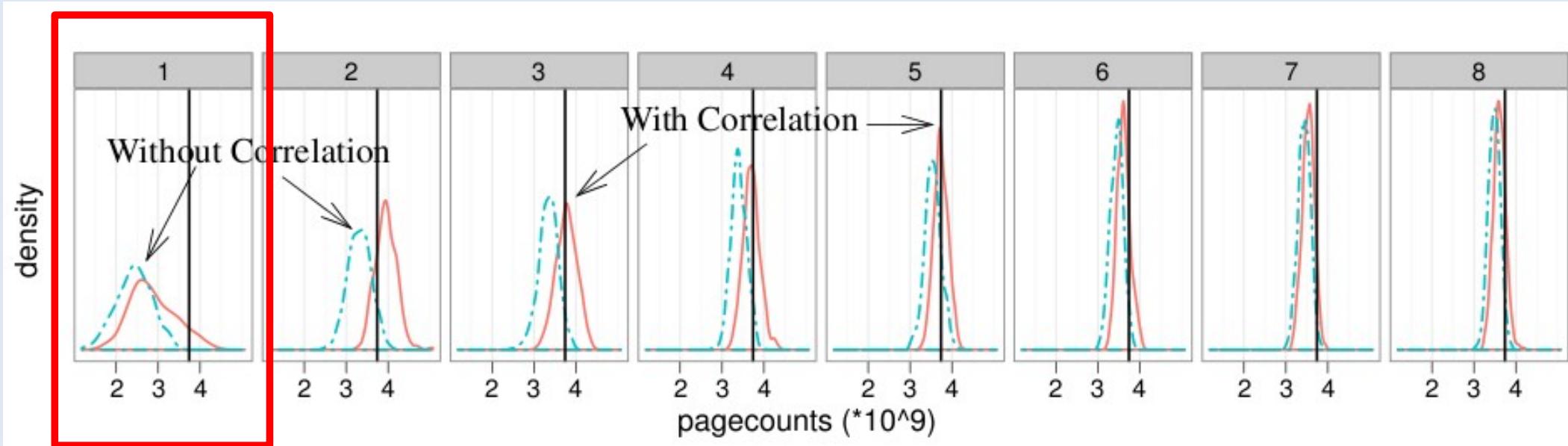
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - Non-randomized → Inaccurate estimates



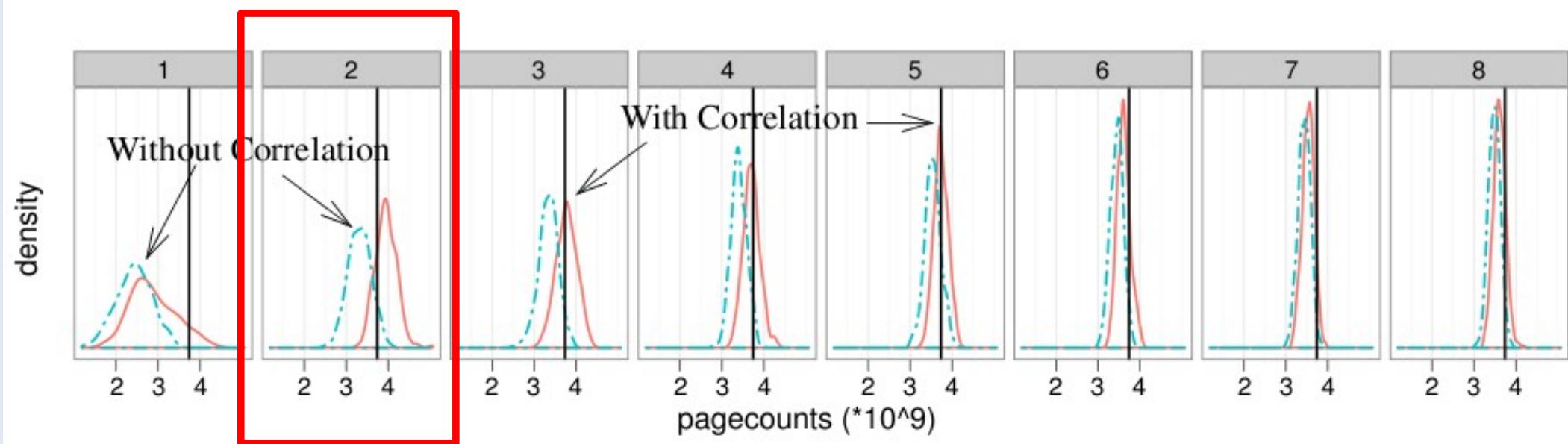
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - Processing large block → no correlation detected



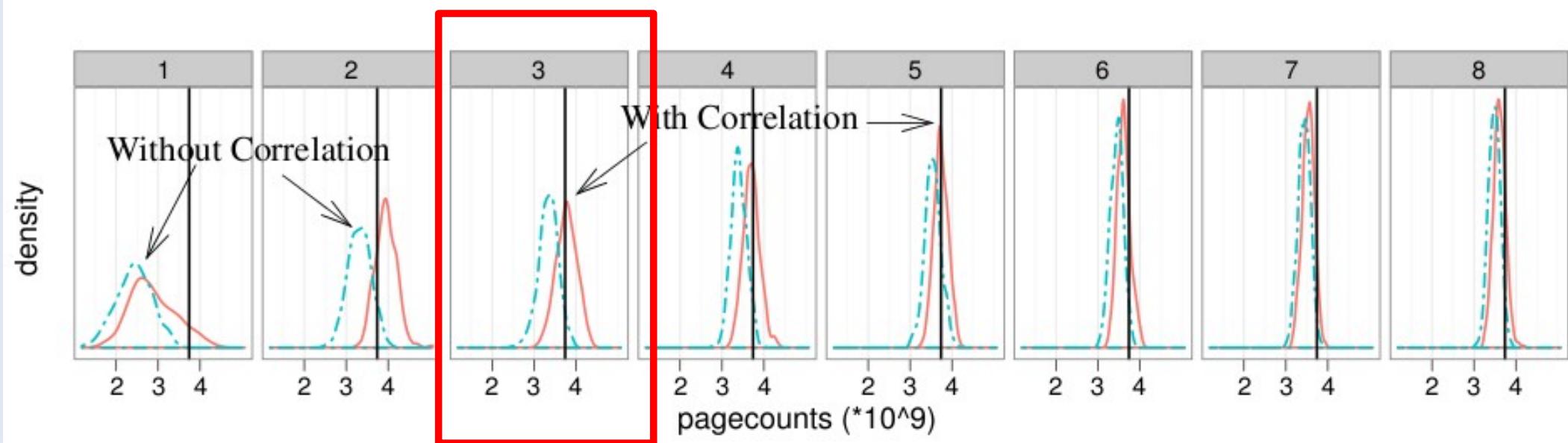
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - Correlation detected → With correlation: Slightly more accurate



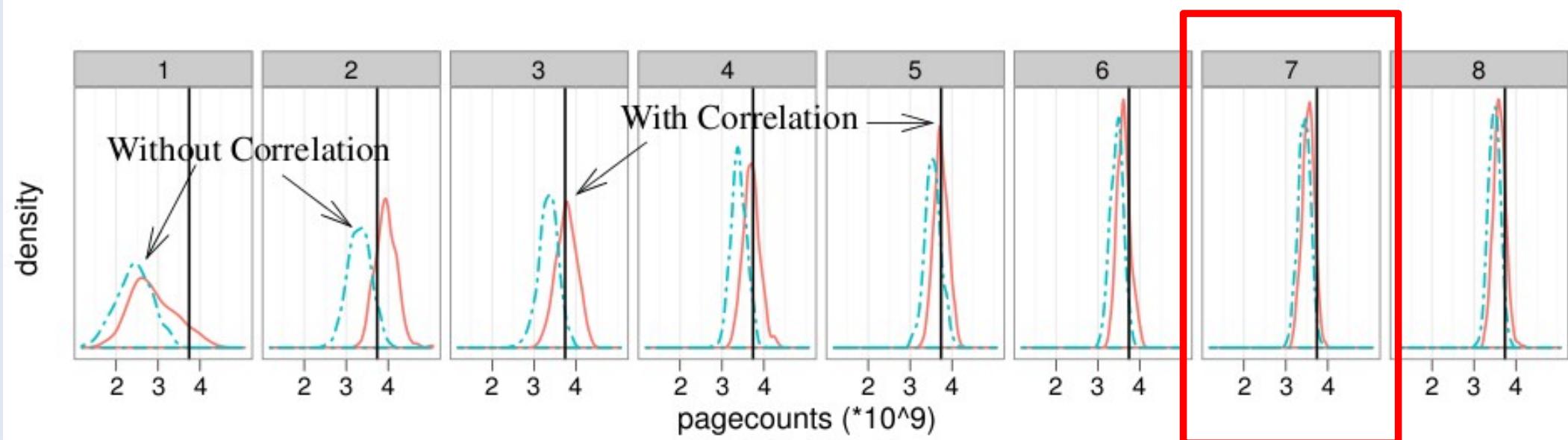
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset)
 - Correlation detected → With correlation: Unbiased



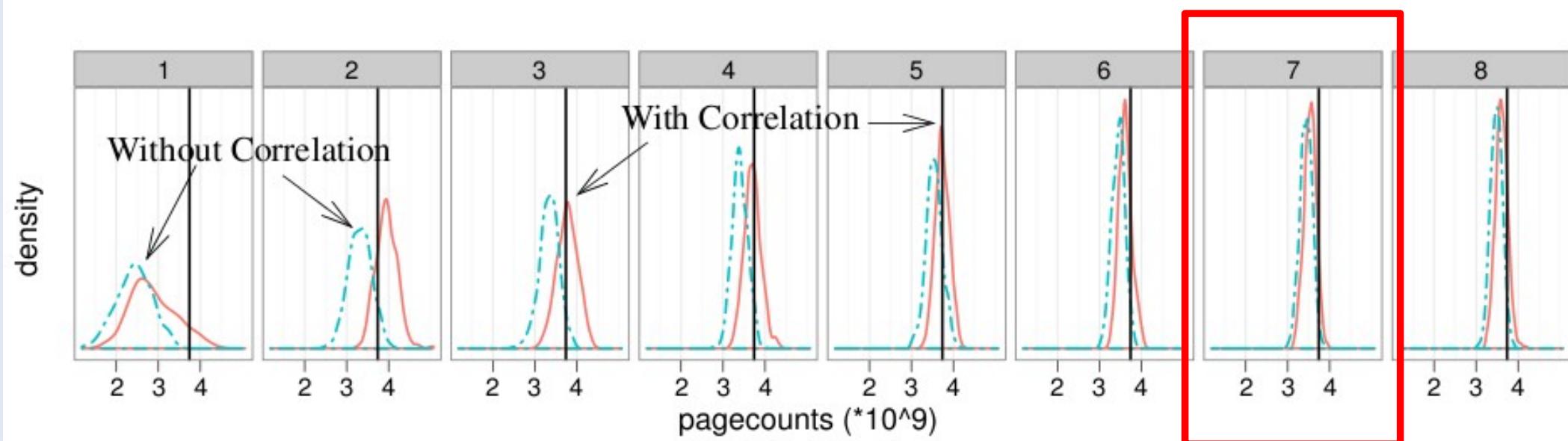
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset) → Uniform Configuration (low correlation)



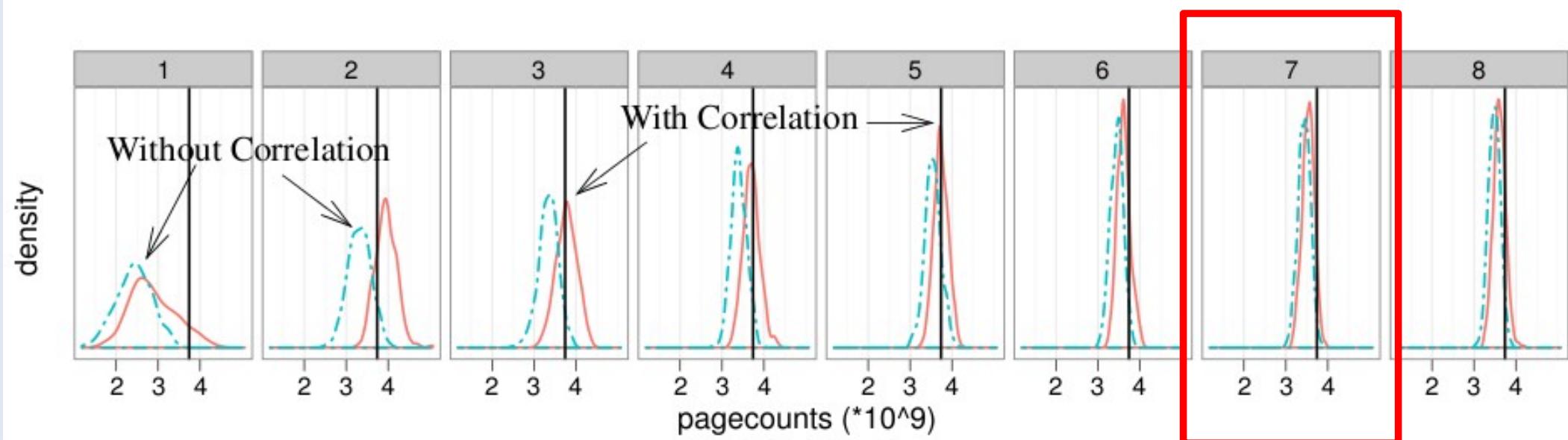
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset) → Uniform Configuration (low correlation) + As ↑ data, likelihood takes over



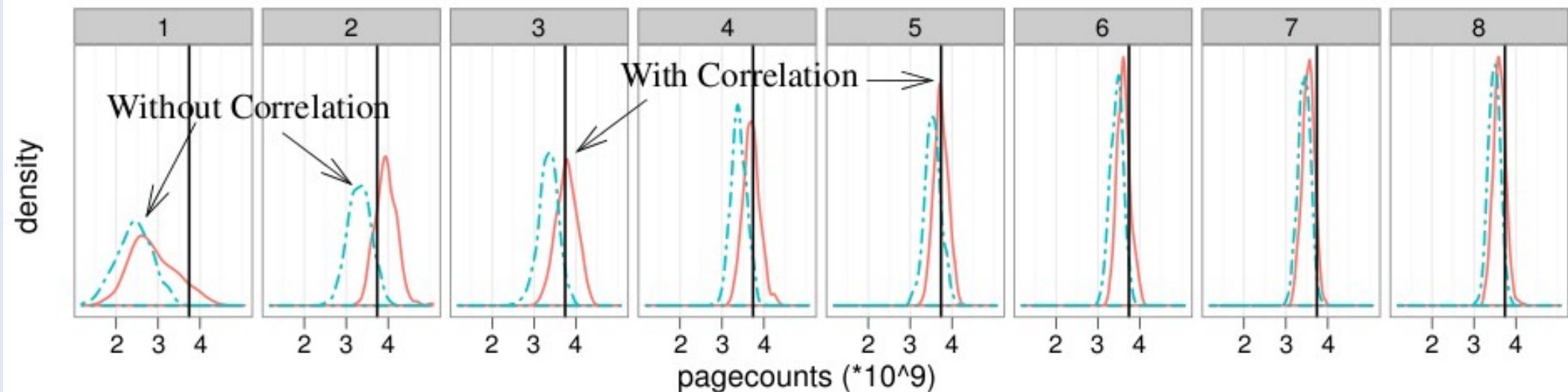
Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - Convergence of estimates
- Experiment 1: (Real dataset) → Uniform Configuration (low correlation) + As ↑ data, likelihood takes over → estimates similar



Experiments

- Hypothesis:
 - Randomized Queue required
 - Allow correlation between processing time and value
 - **Convergence of estimates**
- Experiment 1: (Real dataset)



Outline

- Motivation
- Implementation
- Experiments
- Conclusion

Conclusion

- OLA over MapReduce
 - Statistically robust estimates
- Model that accounts for biases that can arise in distributed environment
- Little modification to existing MapReduce architecture

Thanks for your time and attention

Questions ?

