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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

(Note: final answer for this query is 1000)
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 1 second,

 Conventional Database:

 With OLA extension:

 Output range estimate: [0, 2000 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 2 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [900, 1100 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 4 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [950, 1040 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 6 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [990, 1010 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 10 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [995, 1005 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 30 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [999, 1001.5 ] with 95% probability
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OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 2 hours,

 Conventional Database:

 Output final answer: 1000
 With OLA extension:

 Output final answer: 1000
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Benefit of OLA
 If acceptably accurate answer reached quickly, the query can 

be aborted

After 6 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [990, 1015 ] with 95% probability

STOP EARLY !!!
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Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5' 

- For exploratory apps

- Inaccuracies in ETL process
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Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5' 

- For exploratory apps

- Inaccuracies in ETL process
 Save machine time → Cost ↓

 Very important when dealing with large data

Online Aggregation
- Introduced in 1997
- Significant research impact (606 
citations)
- ACM SIGMOD Test of Time Award

But, limited commercial impact
- Database market (self-managed)
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Self-managed DB → Cloud
 Cost model 

 In Self-managed DB: costs are fixed
 In Cloud: You pay for amount of hardware used

- Less resources → Less cost 

- 10 node cluster: 1h 54min → save $12.92/query on EC2 
 User needs to justify the cost to the organization
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Self-managed DB → Cloud
 Cost model 

 In Self-managed DB: costs are fixed
 In Cloud: You pay for amount of hardware used

- Less resources → Less cost 

- 10 node cluster: 1h 54min → save $12.92/query on EC2 
 User needs to justify the cost to the organization

 Modifiying engine to support randomization

 Traditional DB: Notoriously difficult
 Cloud: Much simpler

 Therefore, OLA for cloud is an interesting problem
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Extend existing approaches

 OLA over single machine

 OLA over multiple machine

 Why it won't work ?

 How do we deal with those issues ?
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Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks
 Blocks arrive in random order

 OLA over multiple machines

 Why it won't work ?
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Note: True answer = 55

5, 9

7, 4, 2

8, 3

1, 10, 6
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values 5, 9

7, 4, 2

8, 3

1, 10, 6
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OLA over single machine
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13}

Estimate = 13 * 4 / 1 = 52 
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OLA over single machine
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11}

Estimate = (13 + 11) * 4 / 2 = 48

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3
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OLA over single machine
 Confidence interval found using classical sampling theory
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6



37

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6



38

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values
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OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14, 17}

Estimate = (13 + 11 + 14 + 17) * 4 / 4 = 55

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6
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Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks
 Blocks arrive in random order

 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

So, instead of

 Example: Find SUM of below values
5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

5, 9

8, 3

7, 4, 2

X axis = Processing Time
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

 Blocks that take 

 long time to process = RED
 Short time to process = Green

7, 4, 2 8, 3 5, 9 1, 10, 6
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Arrows = Random Time Instances (Polling blocks)

7, 4, 2 8, 3 5, 9 1, 10, 6
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable
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OLA over multiple machines
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OLA over multiple machines
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OLA over multiple machines
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Notice, there are more arrows on red region than green region 

7, 4, 2 8, 3 5, 9 1, 10, 6
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OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Notice, there are more arrows on red region than green region 

Inspection Paradox: At any random time t, (stochastically) you 
will be processing those blocks that take long time

7, 4, 2 8, 3 5, 9 1, 10, 6
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Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks

- Arrive in random order
 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?
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Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing 
longer blocks

 Possible: correlation between processing time and value

 Eg: count query
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Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing 
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

 Biased estimates → current techniques won't work

This effect is found experimentally 
in the paper: 'MapReduce Online'
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Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing 
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

 Biased estimates → current techniques won't work

 Therefore, need to deal with inspection paradox in principled 
fashion
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Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks

- Arrive in random order
 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?
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How do we deal with Inspection Paradox

 Capture timing information (i.e. processing time of block)

 Along with values

 Instead of using classical sampling theory, we output estimates 
using bayesian model that:

 Allows for correlation between processing time and values
 And also takes into account the processing time of current 

block
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Outline

 Motivation

 Implementation

 Experiments

 Conclusion
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Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/
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Implementation Overview
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- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop
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Modifications to MapReduce (Hyracks)

 Master 

 Maintains random ordering of blocks 

- Logical not physical queue
 Assigns block from head of queue
 Block comes to head of queue → Timer starts (processing 

time)

 Two intermediates set of files

 Data file → Values
 Metadata file → Timing information
 Shuffle phase of reducer
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Modifications to MapReduce (Hyracks)

Client Master

select sum(stock_price) from nasdaq_db group by company;

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 0
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 1

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6 Blk 7

Master maintains a logical 
queue of the blocks
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 1

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Master randomizes the 
queue
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 2

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Master forks workers
Worker 1

Worker 2
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 3

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Workers request for blocks 
Worker 1

Worker 2
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 4

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Masters reads head of 
queue and assigns it to 
first worker

Worker 1

Worker 2

Blk6
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 5

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker1 starts reading 
Blk6Worker 1

Worker 2

Blk6
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 6

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Assigns Blk5 to Worker2
Worker 1

Worker 2

<MSFT, 2>

Blk5
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 7

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker1 does its map task
Worker 1

Worker 2

<MSFT, 2>

Blk5
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 8

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

<MSFT, 2>

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

t
process

 = 4
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT
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Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation



81

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2
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Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/
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Bayesian Estimator
 Why ? → To deal with Inspection Paradox

 How ? 

 Allows for correlation between processing time and values
 And also take into account the processing time of current 

block
 Implementation:

 C++ code using GNU Scientific Library and Minuit2
 Input: Data file and Metadata file from Reducer
 Output: Confidence Interval → Eg:[995, 1005] with 95% prob
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Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X 
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

- Correlation between X, T
process

 and T
scheduling

- f(X | T
process

 > 100000000, T
scheduling

 = 22) ≠ f(X)

 Estimation using Bayesian Machinery

 Gibbs Sampler

- Developed probability (or update) equations

Detailed discussion in the paper



96

Outline

 Motivation

 Implementation

 Experiments

 Conclusion
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Experiments
 Hypothesis:

 Randomized Queue required 
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 select sum(page_count) from wikipedia_log group by language
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer
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 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

True answer

Reading the figures
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 Convergence of estimates

 Experiment 1: (Real dataset)
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Experiments
 Hypothesis:

 Randomized Queue required 
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 Correlation detected → With correlation: Unbiased
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)
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Experiments
 Hypothesis:

 Randomized Queue required 
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset) → Uniform Configuration (low

correlation) + As ↑ data, likelihood takes over → estimates similar

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)
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Experiments
 Hypothesis:

 Randomized Queue required 
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer
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Conclusion
 OLA over MapReduce

 Statistically robust estimates
 Model that accounts for biases that can arise in distributed 

environment

 Little modification to existing MapReduce architecture
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Thanks for your time and attention

Questions ?
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