
Online Aggregation for Large
MapReduce Jobs

Niketan Pansare1, Vinayak Borkar2,
Chris Jermaine1, Tyson Condie3

1Rice University, 2UC Irvine, 3Yahoo! Research

2

Outline

 Motivation

 Implementation

 Experiments

 Conclusion

3

Outline

 Motivation

 Implementation

 Experiments

 Conclusion

4

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

(Note: final answer for this query is 1000)

5

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 1 second,

 Conventional Database:

 With OLA extension:

 Output range estimate: [0, 2000] with 95% probability

6

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 2 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [900, 1100] with 95% probability

7

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 4 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [950, 1040] with 95% probability

8

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 6 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [990, 1010] with 95% probability

9

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 10 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [995, 1005] with 95% probability

10

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 30 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [999, 1001.5] with 95% probability

11

OLA example
select avg(stock_price) from nasdaq_db where company = 'xyz';

After 2 hours,

 Conventional Database:

 Output final answer: 1000
 With OLA extension:

 Output final answer: 1000

12

Benefit of OLA
 If acceptably accurate answer reached quickly, the query can

be aborted

After 6 minutes,

 Conventional Database:

 With OLA extension:

 Output range estimate: [990, 1015] with 95% probability

STOP EARLY !!!

13

Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5'

- For exploratory apps

- Inaccuracies in ETL process

14

Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5'

- For exploratory apps

- Inaccuracies in ETL process
 Save machine time → Cost ↓

15

Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5'

- For exploratory apps

- Inaccuracies in ETL process
 Save machine time → Cost ↓

 Very important when dealing with large data

16

Why Stop Early ?

 Save human time (1 hour 54 minutes)

 'Answer 1000' v/s 'Estimate 1002.5'

- For exploratory apps

- Inaccuracies in ETL process
 Save machine time → Cost ↓

 Very important when dealing with large data

Online Aggregation
- Introduced in 1997
- Significant research impact (606
citations)
- ACM SIGMOD Test of Time Award

But, limited commercial impact
- Database market (self-managed)

17

Self-managed DB → Cloud
 Cost model

 In Self-managed DB: costs are fixed
 In Cloud: You pay for amount of hardware used

- Less resources → Less cost

- 10 node cluster: 1h 54min → save $12.92/query on EC2
 User needs to justify the cost to the organization

18

Self-managed DB → Cloud
 Cost model

 In Self-managed DB: costs are fixed
 In Cloud: You pay for amount of hardware used

- Less resources → Less cost

- 10 node cluster: 1h 54min → save $12.92/query on EC2
 User needs to justify the cost to the organization

 Modifiying engine to support randomization

 Traditional DB: Notoriously difficult
 Cloud: Much simpler

19

Self-managed DB → Cloud
 Cost model

 In Self-managed DB: costs are fixed
 In Cloud: You pay for amount of hardware used

- Less resources → Less cost

- 10 node cluster: 1h 54min → save $12.92/query on EC2
 User needs to justify the cost to the organization

 Modifiying engine to support randomization

 Traditional DB: Notoriously difficult
 Cloud: Much simpler

 Therefore, OLA for cloud is an interesting problem

20

Extend existing approaches

 OLA over single machine

 OLA over multiple machine

 Why it won't work ?

 How do we deal with those issues ?

21

Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks
 Blocks arrive in random order

 OLA over multiple machines

 Why it won't work ?

 How do we deal with those issues ?

22

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Note: True answer = 55

5, 9

7, 4, 2

8, 3

1, 10, 6

23

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values 5, 9

7, 4, 2

8, 3

1, 10, 6

24

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {}

Estimate = Not available

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2

25

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {}

Estimate = Not available

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2

26

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {}

Estimate = Not available

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2

27

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13}

Estimate = 13 * 4 / 1 = 52

7, 4, 2

5, 9

7, 4, 2

8, 3

1, 10, 6

28

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13}

Estimate = 13 * 4 / 1 = 52

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3

29

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13}

Estimate = 13 * 4 / 1 = 52

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3

30

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11}

Estimate = (13 + 11) * 4 / 2 = 48

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3

31

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11}

Estimate = (13 + 11) * 4 / 2 = 48

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3

32

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11}

Estimate = (13 + 11) * 4 / 2 = 48

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9

33

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11}

Estimate = (13 + 11) * 4 / 2 = 48

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9

34

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9

35

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

36

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

37

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

38

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14}

Estimate = (13 + 11 + 14) * 4 / 3 = 50.67

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

39

OLA over single machine
 Confidence interval found using classical sampling theory

 Tuples are bundled into blocks

 Blocks arrive in random order

 Example: Find SUM of below values

Sample = {13, 11, 14, 17}

Estimate = (13 + 11 + 14 + 17) * 4 / 4 = 55

5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

40

Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks
 Blocks arrive in random order

 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?

41

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

So, instead of

 Example: Find SUM of below values
5, 9

7, 4, 2

8, 3

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

42

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

1, 10, 6

7, 4, 2 8, 3 5, 9 1, 10, 6

5, 9

8, 3

7, 4, 2

X axis = Processing Time

43

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

 Blocks that take

 long time to process = RED
 Short time to process = Green

7, 4, 2 8, 3 5, 9 1, 10, 6

44

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Arrows = Random Time Instances (Polling blocks)

7, 4, 2 8, 3 5, 9 1, 10, 6

45

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

46

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

47

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

48

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

49

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

50

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

51

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

52

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

53

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

7, 4, 2 8, 3 5, 9 1, 10, 6

54

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Notice, there are more arrows on red region than green region

7, 4, 2 8, 3 5, 9 1, 10, 6

55

OLA over multiple machines
 Blocks → Non-uniform → Size, Locality, Machine, Network

 Processing time for block can be large and highly variable

 Example: Find SUM of below values

Notice, there are more arrows on red region than green region

Inspection Paradox: At any random time t, (stochastically) you
will be processing those blocks that take long time

7, 4, 2 8, 3 5, 9 1, 10, 6

56

Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks

- Arrive in random order
 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?

57

Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

58

Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

 Biased estimates → current techniques won't work

59

Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

 Biased estimates → current techniques won't work

This effect is found experimentally
in the paper: 'MapReduce Online'

60

Why won't previous approach work ?

 Inspection paradox → At the time of estimation, processing
longer blocks

 Possible: correlation between processing time and value

 Eg: count query

 Biased estimates → current techniques won't work

 Therefore, need to deal with inspection paradox in principled
fashion

61

Extend existing approaches

 OLA over single machine

 Confidence interval found using classical sampling theory
 Tuples are bundled into blocks

- Arrive in random order
 OLA over multiple machines

 Blocks → Non-uniform → Size, Locality, Machine, Network
 Processing time for block can be large and highly variable

 Why it won't work ?

 How do we deal with those issues ?

62

How do we deal with Inspection Paradox

 Capture timing information (i.e. processing time of block)

 Along with values

 Instead of using classical sampling theory, we output estimates
using bayesian model that:

 Allows for correlation between processing time and values
 And also takes into account the processing time of current

block

63

Outline

 Motivation

 Implementation

 Experiments

 Conclusion

64

Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/

65

Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/

66

Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/

67

Modifications to MapReduce (Hyracks)

 Master

 Maintains random ordering of blocks

- Logical not physical queue
 Assigns block from head of queue
 Block comes to head of queue → Timer starts (processing

time)

 Two intermediates set of files

 Data file → Values
 Metadata file → Timing information
 Shuffle phase of reducer

68

Modifications to MapReduce (Hyracks)

Client Master

select sum(stock_price) from nasdaq_db group by company;

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

69

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 0

70

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 1

Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6 Blk 7

Master maintains a logical
queue of the blocks

71

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 1

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Master randomizes the
queue

72

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 2

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Master forks workers
Worker 1

Worker 2

73

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 3

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Workers request for blocks
Worker 1

Worker 2

74

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 4

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Masters reads head of
queue and assigns it to
first worker

Worker 1

Worker 2

Blk6

75

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 5

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker1 starts reading
Blk6Worker 1

Worker 2

Blk6

76

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 6

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Assigns Blk5 to Worker2
Worker 1

Worker 2

<MSFT, 2>

Blk5

77

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 7

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker1 does its map task
Worker 1

Worker 2

<MSFT, 2>

Blk5

78

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 8

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

<MSFT, 2>

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

t
process

 = 4

79

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

80

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation

81

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation

t
process

 > 3

82

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation

t
process

 > 3

83

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation

t
process

 > 3

Estimation
codeBlk6: t

process
 = 4

Blk5: t
process

 > 3

Blk6: <MSFT, 2>

84

Modifications to MapReduce (Hyracks)

Client Master

Blk1 MSFT
AAPL

2
4

Blk2 ORCL 3

Blk3 AAPL 4

Blk4 MSFT 2

Blk5 ORCL 3

Blk6 MSFT 2

Blk7 AAPL 4

Time t = 9

Blk 6 Blk 5 Blk 3 Blk 1 Blk 4 Blk 7 Blk 2

Worker 1

Worker 2

Blk5

Reducer

Shuffle
Phase

Reduce
Phase

<MSFT, 2>

<MSFT, 2>

t
process

 = 4

Reducer-MSFT

Random Time instance: Do estimation

t
process

 > 3

Estimation
code[5.8, 8]

85

Implementation Overview
 Framework for distributed systems: MapReduce

 Hadoop

- Staged processing → Online
 Hyracks (developed at UC Irvine)

- Pipelining → ”Online”

- Architecture (and API) similar to Hadoop

- http://code.google.com/p/hyracks/

 For estimates of ”Aggregation”,

 2 modifications to MapReduce (Hyracks)
 Bayesian Estimator

http://code.google.com/p/hyracks/

86

Bayesian Estimator
 Why ? → To deal with Inspection Paradox

87

Bayesian Estimator
 Why ? → To deal with Inspection Paradox

 How ?

 Allows for correlation between processing time and values
 And also take into account the processing time of current

block

88

Bayesian Estimator
 Why ? → To deal with Inspection Paradox

 How ?

 Allows for correlation between processing time and values
 And also take into account the processing time of current

block
 Implementation:

 C++ code using GNU Scientific Library and Minuit2
 Input: Data file and Metadata file from Reducer
 Output: Confidence Interval → Eg:[995, 1005] with 95% prob

89

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X

90

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

91

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

92

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

- Correlation between X, T
process

 and T
scheduling

93

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

- Correlation between X, T
process

 and T
scheduling

- f(X | T
process

 > 100000000, T
scheduling

 = 22) ≠ f(X)

94

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

- Correlation between X, T
process

 and T
scheduling

- f(X | T
process

 > 100000000, T
scheduling

 = 22) ≠ f(X)

 Estimation using Bayesian Machinery

 Gibbs Sampler

- Developed probability (or update) equations

95

Bayesian Estimator (Model)
 Parameterized model:

 Timing Information:T
process

, T
scheduling

 Value: X
 Underlying distribution

 Classical sampling theory: f(X)

 Our approach: f(X, T
process

, T
scheduling

)

- Correlation between X, T
process

 and T
scheduling

- f(X | T
process

 > 100000000, T
scheduling

 = 22) ≠ f(X)

 Estimation using Bayesian Machinery

 Gibbs Sampler

- Developed probability (or update) equations

Detailed discussion in the paper

96

Outline

 Motivation

 Implementation

 Experiments

 Conclusion

97

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 select sum(page_count) from wikipedia_log group by language
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

98

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 select sum(page_count) from wikipedia_log group by language
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

99

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

Percentage of data processed

Reading the figures

100

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

Reading the figures

101

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

True answer

Reading the figures

102

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 10% of data processed → Non-randomized: Inaccurate estimate
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

103

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 20% of data processed → Non-randomized: Inaccurate estimate
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

104

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 Non-randomized → Inaccurate estimates
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

105

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 Processing large block → no correlation detected
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

106

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 Correlation detected → With correlation: Slightly more accurate
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

107

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 Correlation detected → With correlation: Unbiased
 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

108

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset) → Uniform Configuration (low

correlation)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

109

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset) → Uniform Configuration (low

correlation) + As ↑ data, likelihood takes over

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

110

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset) → Uniform Configuration (low

correlation) + As ↑ data, likelihood takes over → estimates similar

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

111

Experiments
 Hypothesis:

 Randomized Queue required
 Allow correlation between processing time and value
 Convergence of estimates

 Experiment 1: (Real dataset)

 6 months Wikipedia log (220 GB compressed, 3960 blocks)
 11 node cluster (4 disks, 4 cores, 12GB RAM)
 Uniform configuration: Machines, Blocks
 80 mappers and 10 reducer

 Experiment 2: (Simulated data set)

 ↑ correlation (Non-uniform configuration)

112

Outline

 Motivation

 Implementation

 Experiments

 Conclusion

113

Conclusion
 OLA over MapReduce

 Statistically robust estimates
 Model that accounts for biases that can arise in distributed

environment

 Little modification to existing MapReduce architecture

114

Thanks for your time and attention

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114

