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Top-k Query Processing
• Top-k query [Ilyas et al., CSUR’11]

• Information retrieval, recommender system and etc.

• Extremely fruitful area with lots of interesting work

• Rank join [Ilyas et al., VLDB’03, Natsev et al., VLDB’01]

• Well studied top-k operator in the DB community with many 
applications

• Multi-criteria selection

• Information retrieval

• Data mining
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• Rank join
• Extremely useful for building preferred packages of items

• Travel Planning: a package of one museum & one restaurant

Rank Join Operator

Museum
Location Rating

a
a

5
5

b
a

4.5
4.5

b 3.5

Restaurant
Location Rating

c
b
b

4.5
4.5
4.5

a 3
a 3

⨝
Museum.Location = Restaurant.Location

Order By

Keep top-k
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• Aggregation constraints
• Constraints on attribute values of each join result

• Extremely common for applications such as travel packages, 
course recommendations and etc.

Limitation of Rank Join Operator 

Museum
Location Cost Rating

a
a

13.5
15

5
5

b
a

10
15

4.5
4.5

b 5 3.5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

a 5 3
a 10 3

⨝
Order By

Keep top-k

Constrained by
Museum.Cost+Restaurant.Cost  50
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Museum.Location = Restaurant.Location

Museum.Rating +Restaurant.Rating
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Review of Existing Rank Join Algorithms

• Existing algorithms [Ilyas et al., VLDB’03] [Schnaitter and Polyzotis, PODS’08]

• Settings: Tuples in each table pre-sorted based on the score 
attribute(s)

• Threshold-based algorithm

• Accessing tuples iteratively from each table

• Determine a upper bound after a new tuple is accessed

• Stop if the current top-k results of accessed tuples are 
better than the upperbound

• Cruxes of the rank join algorithms
• Item accessing strategy (Round Robin/Adaptive)

• Bounding schemes (Corner Bound/FR(*) Bound)

• Significantly affect the performance of the underlying rank join 
algorithms
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Review Existing Rank Join Algorithms

• Performance of rank join algorithm
• Number of items accessed

• In memory computation cost

• Rank join algorithms with FR(*) bounding scheme 
is Instance Optimal [Schnaitter and Polyzotis, PODS’08]

• Within a broad class of algorithms, the # of items accessed is 
always bounded by a constant factor compared with other 
algorithm

• Instance optimality alone doesn’t guarantee good 
overall performance! [Finger and Polyzotis, SIGMOD’09]

• In memory computational cost may dominate the cost
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Leveraging Existing Rank Join Algorithms

• How to support aggregation constraints?
• A naive solution: post-filtering

• Threshold-based algorithm

• Accessing tuples iteratively from each table

• Determine a upper bound after a new tuple is accessed

• Stop if seen top-k results of accessed tuples, which 
satisfies all aggregation constraints, are better 
than the upper bound

• How good is this naive algorithm?
• Instance Optimal ! (Proof in the paper)

• Yet bad empirical performance

• In memory processing cost is high
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Optimization Opportunity (i)

• Number of tuples kept for each relation
• Museum : 5

• Restaurant : 4

• Number of join probes performed (Round Robin)
• 20

Museum
Location Cost Rating

a
a

13.5
15

5
5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

t1:
t2:

t6:
t7:
t8:b

a
10
15

4.5
4.5 a 5 3t9:

b 5 3.5t5: a 10 3t10:

t3:
t4: { t3, t8 }

Top-2 results

{ t1, t9 }
Upperbound : 8

: 9

: 8
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SUM(Cost)  20

Constraint
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Optimization Opportunity (ii)

• Deterministic optimization

Museum
Location Cost Rating

a
a

13.5
15

5
5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

t1:
t2:

t6:
t7:
t8:b

a
10
15

4.5
4.5 a 5 3t9:

b 5 3.5t5: a 10 3t10:

t3:
t4:

Deterministic tuple pruning can save many 
unnecessary join probes during the query processing

Top-2 results
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Aggregation Constraints
• Aggregation constraint definition

• Let A be an attribute, λ be a constant value, θ be a 
comparison operator and AGG be an aggregation function 
{MIN,MAX,SUM}

• Primitive aggregation constraint (PAC)

• Aggregation constraint (AC)

ac ::= pac | pac ^ ac

pac ::= AGG(A) ✓ �

Museum
Location Cost Rating

a
a

13.5
15

5
5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

t1:
t2:

t6:
t7:
t8:b

a
10
15

4.5
4.5 a 5 3t9:

b 5 3.5t5: a 10 3t10:

t3:
t4: { t3, t8 }

Top-2 results

{ t1, t9 }

Constraint
SUM(Cost,true) ≤ 20
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Problem Definition
• Rank Join with Aggregation Constraints

• Given a set of relations R, a join condition jc, a 
monotonic score function S and an aggregation 
constraint ac

• Find top-k join results which satisfy ac
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Deterministic Optimization (i)
• Basic properties of aggregation constraints

• When AGG is MIN and θ is ≥, the corresponding PAC can 
leverage on direct-pruning.
• If a tuple t doesn’t satisfies the PAC, t can be directly 

pruned
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Example (i)

Museum
Location Cost Rating

a
a

13.5
15

5
5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

t1:
t2:

t6:
t7:
t8:b

a
10
15

4.5
4.5 a 5 3t9:

b 5 3.5t5: a 10 3t10:

t3:
t4: Top-2 results
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Deterministic Optimization (i)
• Basic properties of aggregation constraints

• When AGG is MAX and θ is ≥, the corresponding PAC is 
monotone.
• If a tuple t satisfies the PAC, join results of t with any tuple 

also satisfy the PAC

• When AGG is SUM and θ is ≤, the corresponding PAC is 
anti-monotone.
• If a tuple t doesn’t satisfy the PAC, join results of t with 

any tuple also don’t satisfy the PAC

17

17Wednesday, 31 August, 11



University of British Columbia / Birkbeck, University of London

Deterministic Optimization (i)
• Basic properties of aggregation constraints

18

Pruning based on investigating each individual tuple
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Deterministic Optimization (ii)
• Subsumption-based Pruning (Motivation)

Museum
Location Cost Rating

a
a

13.5
15

5
5

Restaurant
Location Cost Rating

c
b
b

50
20
10

4.5
4.5
4.5

t1:
t2:

t6:
t7:
t8:b

a
10
15

4.5
4.5 a 5 3t9:

b 5 3.5t5: a 10 3t10:

t3:
t4: Top-2 results
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SUM(Cost)  20
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Pruning based on comparing tuples

19Wednesday, 31 August, 11



University of British Columbia / Birkbeck, University of London

Deterministic Optimization (ii)
• pac-Dominance Relationship

• Comparing two tuples w.r.t. a single PAC

• Given two tuples t, t’ from the same relation R

• t pac-dominates t’ (or t ≽pac t’), if

• for any tuple t’’ which can join with t’ without violating pac

• t’’ can also join with t without violating pac

• For the common scenario where we have one 
aggregation constraint per attribute

• Sufficient and necessary conditions for determining pac-
dominance relationship of each possible aggregation constraint
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Deterministic Optimization (ii)
• Example

• Consider AGG is SUM, and θ is ≥, t ≽pac t’ iff. 
• t, t’ has the same join attribute value

• Either

• t satisfies the PAC

• Or t.A ≥ t’.A

• Similar conditions can be derived for other 
aggregation constraints (details in the paper)

21

Location # of ReviewRating
a
a

15
9

5
5

t1:
t2:

a
a

8
8

4.5
4.5

a 5 3.5t5:

t3:
t4:

# of Review ≥ 10 

Top-1

Quasi-order:
reflexive, transitive

anti-symmetric
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Deterministic Optimization (ii)
• Tuple Subsumption

• Let ac = pac1 ⋀ ... ⋀ pacm be the aggregation constraint

• t subsumes t’ (or t ≽ t’) if 
• score of t is larger than or equal to t’

• for all pac in ac

• t ≽pac t’

22

22Wednesday, 31 August, 11



University of British Columbia / Birkbeck, University of London

Deterministic Optimization (ii)
• Theorem 1:

• A tuple t from relation R can be directly dropped iff. t 
is subsumed by at least k other tuples in R

• Small improvement: after we have found k’ join result 
which are guaranteed to be the top-k’ results (k’ < k)

• A tuple t from relation R can be directly dropped iff. t 
is subsumed by at least k - k’ other tuples in R

• Adaptive subsumption based pruning
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Optimized Algorithm for Rank Join with 
Aggregation Constraints

• Procedure kRJAC

1. Access new items from each relation
2. Using the basic property of aggregation 

constraints to prune tuples which are not 
promising

3. Use subsumption based pruning to further prune 
away unpromising tuples

4. If a new tuple isn’t pruned, join it with accessed 
tuples from other relations

5. Update upperbound threshold and check the 
stopping criteria
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Probabilistic Optimization
• Rank join algorithms with deterministic pruning 

can save lots of in memory computations

• Can we further speedup the algorithm?

• Utilize a probabilistic procedure inspired by the previous 
work on probabilistic top-k algorithms [Theobald et al., VLDB’04]

• Don’t need 100% guarantee that the returned top-k 
results are actual top-k results

• Stop the algorithm once we can guarantee the current 
top-k results are correct with a certain confidence 
threshold
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Probabilistic Optimization
• Let ac = pac1 ⋀ ... ⋀ pacm be the aggregation constraint

• Let jc be the join condition

• Given a set s of tuples, consider the join result of s

• The probability of it satisfying jc can be estimated using 
existing work in RDBMS [Lipton et al., SIGMOD’90], let it be Pjc 

• For common data distributions such as uniform and 
exponential, the probability of the join result of s 
satisfying each pac can also be estimated (details in the 
paper), let it be Ppc
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Probabilistic Optimization
• Assume all PACs and the join condition are mutually 

independent

• Let N be the estimated number of possible join results 
which are better than the current top-k result [Theobald et al., 
VLDB’04]

• based on histogram

• The probability of having a future join result which is 
better than current top-k result can be estimated as

• We stop the algorithm if P ≤ ε

P = 1� (1� Pjc^ac)
N

Pjc^ac = Pjc ⇥
Y

pac2ac

Ppc
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Data Setting
• Consider synthetic two relation datasets

• For join attribute, the join selectivity fixed at 0.01

• For other attributes, we consider two settings

• Uniform attribute value distribution

• Exponential attribute value distribution

• Values are normalized to [0,1]
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Efficiency Study (Single PAC)
• SUM(A) ≥ λ, selectivity 10-5

• Subsumption-based pruning
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Efficiency Study (Single PAC)
• SUM(A) ≤ λ, selectivity 10-5

• Anti-monotone & Subsumption-based pruning
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Efficiency Study (Multiple PACs)
• SUM(A) ≥ λ, SUM(B) ≥ λ, overall selectivity 10-5
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Quality of Probabilistic Algorithm
• Often much faster than deterministic algorithm

• The value of the top-k result get from the 
probabilistic algorithm is very close to the exact 
top-k result
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Related Work
• Aggregation constraints

• Well studied in the database community [Levy et al., 
VLDB’94][Ng et al., SIGMOD’98][Pei and Han, KDD’00][Ross et al., TCS’98]

• Allows users to impose application-specific 
preferences 

• Optimizes the performance of the underlying 
algorithms
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Related Work
• Top-k query processing [Ilyas et al. CSUR’11]

• Threshold algorithm [Fagin, PODS’01]

• Rank Join

• Implemented inside RDBMS engines [Ilyas et al., 
SIGMOD’04, Li et al., SIGMOD’05]

• Indexing schemes [Tsaparas et al., ICDE’03]

• Many variations [Martinenghiand and Tagliasacchi, PVLDB’10]
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Related Work
• Top-k package recommendation 

• Fixed size package recommendation [Angel et al., EDBT’09]

• Flexible size package recommendation [Xie et al., 
RecSys’10] [Parameswaran et al., TOIS’11]

• The underlying problem is significantly harder

• Outer join instead of natural/inner join

• Techniques proposed in this work can still be 
applied to optimize the performance of the 
algorithm
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Conclusion
• Applications: trip planning and curriculum planning

• Aggregation constrained top-k query processing

• Naive algorithm works yet high memory computation 
cost

• Deterministic optimization: tuple pruning

• Probabilistic optimization

• Future work

• Consider flexible size package recommendation under 
the current framework

• Broader classes of constraints

38

38Wednesday, 31 August, 11



Thank you.
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