

Efficient Rank Join with Aggregation Constraints

Min Xie[†], Laks V.S. Lakshmanan[†], Peter Wood[‡]

[†] *University of British Columbia*

[‡] *Birkbeck, University of London*

Outline

- Introduction
- Aggregation Constraints
- Deterministic Optimization
- Probabilistic Optimization
- Empirical Results

Top-k Query Processing

- **Top-k query** [Illyas et al., CSUR'11]
 - Information retrieval, recommender system and etc.
 - Extremely fruitful area with lots of interesting work
- **Rank join** [Illyas et al., VLDB'03, Natsev et al., VLDB'01]
 - Well studied top-k operator in the DB community with many applications
 - Multi-criteria selection
 - Information retrieval
 - Data mining

Rank Join Operator

- Rank join
 - Extremely useful for building preferred packages of items
 - **Travel Planning**: a package of one museum & one restaurant

Museum	
Location	Rating
a	5
a	5
b	4.5
a	4.5
b	3.5

Museum.Location = Restaurant.Location

Order By

Museum.Rating + Restaurant.Rating

Keep top-k

Restaurant	
Location	Rating
c	4.5
b	4.5
b	4.5
a	3
a	3

Limitation of Rank Join Operator

- Aggregation constraints
 - Constraints on **attribute values of each join result**
 - Extremely common for applications such as travel packages, course recommendations and etc.

Museum		
Location	Cost	Rating
a	13.5	5
a	15	5
b	10	4.5
a	15	4.5
b	5	3.5

$Museum.Location = Restaurant.Location$

Order By

$Museum.Rating + Restaurant.Rating$

Keep top-k

Restaurant		
Location	Cost	Rating
c	50	4.5
b	20	4.5
b	10	4.5
a	5	3
a	10	3

Constrained by

$Museum.Cost + Restaurant.Cost \leq 50$

Review of Existing Rank Join Algorithms

- Existing algorithms [Illyas et al., VLDB'03] [Schnaitter and Polyzotis, PODS'08]
 - **Settings:** Tuples in each table pre-sorted based on the score attribute(s)
 - Threshold-based algorithm
 - Accessing tuples iteratively from each table
 - Determine a upper bound after a new tuple is accessed
 - Stop if the current top-k results of accessed tuples are better than the upperbound
- Cruxes of the rank join algorithms
 - **Item accessing strategy** (Round Robin/Adaptive)
 - **Bounding schemes** (Corner Bound/FR(*) Bound)
 - Significantly affect the performance of the underlying rank join algorithms

Review Existing Rank Join Algorithms

- Performance of rank join algorithm
 - Number of items accessed
 - In memory computation cost
- Rank join algorithms with FR(*) bounding scheme is **Instance Optimal** [Schnatter and Polyzotis, PODS'08]
 - Within a broad class of algorithms, the # of items accessed is always bounded by a constant factor compared with other algorithm
- Instance optimality alone doesn't guarantee **good overall performance!** [Finger and Polyzotis, SIGMOD'09]
 - In memory computational cost may dominate the cost

Leveraging Existing Rank Join Algorithms

- How to support aggregation constraints?
 - A naive solution: post-filtering
 - Threshold-based algorithm
 - Accessing tuples iteratively from each table
 - Determine a upper bound after a new tuple is accessed
 - Stop if seen top-k results of accessed tuples, **which satisfies all aggregation constraints**, are better than the upper bound
- How good is this naive algorithm?
 - **Instance Optimal !** (Proof in the paper)
 - **Yet bad empirical performance**
 - In memory processing cost is high

Optimization Opportunity (i)

Museum			Restaurant		
Location	Cost	Rating	Location	Cost	Rating
t ₁ : a	13.5	5	t ₆ : c	50	4.5
t ₂ : a	15	5	t ₇ : b	20	4.5
t ₃ : b	10	4.5	t ₈ : b	10	4.5
t ₄ : a	15	4.5	t ₉ : a	5	3
t ₅ : b	5	3.5	t ₁₀ : a	10	3

Constraint

$$SUM(Cost) \leq 20$$

Top-2 results

$$\{ t_3, t_8 \} : 9$$

$$\{ t_1, t_9 \} : 8$$

Upperbound : 8

- Number of tuples kept for each relation
 - Museum : 5
 - Restaurant : 4
- Number of **join probes** performed (Round Robin)
 - 20

Optimization Opportunity (ii)

- Deterministic optimization

Museum			Restaurant		
Location	Cost	Rating	Location	Cost	Rating
t ₁ : a	13.5	5	t ₆ : c	50	4.5
t ₂ : a	15	5	t ₇ : b	20	4.5
t ₃ : b	10	4.5	t ₈ : b	10	4.5
t ₄ : a	15	4.5	t ₉ : a	5	3
t ₅ : b	5	3.5	t ₁₀ : a	10	3

Constraint

$$SUM(Cost) \leq 20$$

Top-2 results

Deterministic tuple pruning can save many unnecessary join probes during the query processing

Outline

- Aggregation Constraints
- Deterministic Optimization
- Probabilistic Optimization
- Empirical Results

Aggregation Constraints

- Aggregation constraint definition
 - Let A be an attribute, λ be a constant value, θ be a comparison operator and AGG be an aggregation function $\{\text{MIN}, \text{MAX}, \text{SUM}\}$
 - Primitive aggregation constraint (PAC)

$$pac ::= AGG(A) \theta \lambda$$
 - Aggregation constraint (AC)

$$ac ::= pac \mid pac \wedge ac$$

Museum			Restaurant			Constraint
Location	Cost	Rating	Location	Cost	Rating	
$t_1: a$	13.5	5	$t_6: c$	50	4.5	$SUM(Cost) \leq 20$
$t_2: a$	15	5	$t_7: b$	20	4.5	
$t_3: b$	10	4.5	$t_8: b$	10	4.5	Top-2 results
$t_4: a$	15	4.5	$t_9: a$	5	3	$\{ t_3, t_8 \}$
$t_5: b$	5	3.5	$t_{10}: a$	10	3	$\{ t_1, t_9 \}$

Problem Definition

- **Rank Join with Aggregation Constraints**
 - Given a set of relations \mathbf{R} , a join condition \mathbf{jc} , a monotonic score function \mathbf{S} and an aggregation constraint \mathbf{ac}
 - Find top- k join results which satisfy \mathbf{ac}

Outline

- Aggregation Constraints
- Deterministic Optimization
- Probabilistic Optimization
- Empirical Results

Deterministic Optimization (i)

- Basic properties of aggregation constraints
 - When AGG is MIN and θ is \geq , the corresponding PAC can leverage on **direct-pruning**.
 - If a tuple \mathbf{t} doesn't satisfies the PAC, \mathbf{t} can be directly pruned

Example (i)

Museum			Restaurant		
Location	Cost	Rating	Location	Cost	Rating
t_1 : a	13.5	5	t_6 : c	50	4.5
t_2 : a	15	5	t_7 : b	20	4.5
t_3 : b	10	4.5	t_8 : b	10	4.5
t_4 : a	15	4.5	t_9 : a	5	3
t_5 : b	5	3.5	t_{10} : a	10	3

Constraint

$$\text{MIN}(Rating) \geq 4$$

Top-2 results

Deterministic Optimization (i)

- Basic properties of aggregation constraints
 - When AGG is MAX and θ is \geq , the corresponding PAC is **monotone**.
 - If a tuple \mathbf{t} satisfies the PAC, join results of \mathbf{t} with any tuple also satisfy the PAC
 - When AGG is SUM and θ is \leq , the corresponding PAC is **anti-monotone**.
 - If a tuple \mathbf{t} doesn't satisfy the PAC, join results of \mathbf{t} with any tuple also don't satisfy the PAC

Deterministic Optimization (i)

- Basic properties of aggregation constraints

AGG\theta	\leq	\geq	$=$
MIN	monotone	direct-pruning	monotone after pruning
MAX	direct-pruning	monotone	monotone after pruning
SUM	anti-monotone	monotone	c-anti-monotone

Pruning based on investigating each individual tuple

Deterministic Optimization (ii)

- Subsumption-based Pruning (Motivation)

Museum			Restaurant			Constraint
Location	Cost	Rating	Location	Cost	Rating	
$t_1: a$	13.5	5	$t_6: c$	50	4.5	$SUM(Cost) \leq 20$
$t_2: a$	15	5	$t_7: b$	20	4.5	
$t_3: b$	10	4.5	$t_8: b$	10	4.5	
$t_4: a$	15	4.5	$t_9: a$	5	3	Top-2 results
$t_5: b$	5	3.5	$t_{10}: a$	10	3	

Pruning based on comparing tuples

Deterministic Optimization (ii)

● **pac-Dominance Relationship**

- Comparing two tuples w.r.t. a single PAC
- Given two tuples t, t' from the same relation \mathbf{R}
- t pac-dominates t' (or $t \succ_{\text{pac}} t'$), if
 - for any tuple t'' which can join with t' without violating pac
 - **t'' can also join with t without violating pac**
- For the common scenario where we have one aggregation constraint per attribute
 - **Sufficient** and **necessary** conditions for determining pac-dominance relationship of each possible aggregation constraint

Deterministic Optimization (ii)

- Example
 - Consider AGG is SUM, and θ is \geq , $t \succ_{\text{pac}} t'$ iff.
 - t, t' has the same join attribute value
 - Either
 - t satisfies the PAC
 - Or $t.A \geq t'.A$
 - Similar conditions can be derived for other aggregation constraints (details in the paper)

Quasi-order:
reflexive, transitive
anti-symmetric

	Location	# of Review	Rating
t_1 :	a	15	5
t_2 :	a	9	5
t_3 :	a	8	4.5
t_4 :	a	8	4.5
t_5 :	a	5	3.5

of Review ≥ 10

Top-1

Deterministic Optimization (ii)

● Tuple Subsumption

- Let $ac = pac_1 \wedge \dots \wedge pac_m$ be the aggregation constraint
- t subsumes t' (or $t \succcurlyeq t'$) if
 - score of t is larger than or equal to t'
 - for all pac in ac
 - $t \succcurlyeq_{pac} t'$

Deterministic Optimization (ii)

- **Theorem I:**

- A tuple t from relation R can be directly dropped iff. t is subsumed by at least k other tuples in R
- *Small improvement*: after we have found k' join result which are guaranteed to be the top- k' results ($k' < k$)
 - A tuple t from relation R can be directly dropped iff. t is subsumed by at least $k - k'$ other tuples in R
 - Adaptive subsumption based pruning

Optimized Algorithm for Rank Join with Aggregation Constraints

- Procedure kRJAC
 - I. Access new items from each relation
 - 2. **Using the basic property of aggregation constraints to prune tuples which are not promising**
 - 3. **Use subsumption based pruning to further prune away unpromising tuples**
 - 4. If a new tuple isn't pruned, join it with accessed tuples from other relations
 - 5. Update upperbound threshold and check the stopping criteria

Outline

- Aggregation Constraints
- Deterministic Optimization
- **Probabilistic Optimization**
- Empirical Results

Probabilistic Optimization

- Rank join algorithms with deterministic pruning can save lots of in memory computations
 - Can we further speedup the algorithm?
 - Utilize a probabilistic procedure inspired by the previous work on probabilistic top-k algorithms [Theobald et al., VLDB'04]
 - Don't need 100% guarantee that the returned top-k results are actual top-k results
 - Stop the algorithm once we can guarantee the current top-k results are correct with a certain confidence threshold

Probabilistic Optimization

- Let $ac = pac_1 \wedge \dots \wedge pac_m$ be the aggregation constraint
- Let jc be the join condition
- Given a set s of tuples, consider the join result of s
 - The probability of it satisfying jc can be estimated using existing work in RDBMS [Lipton et al., SIGMOD'90], let it be P_{jc}
 - For common data distributions such as uniform and exponential, the probability of the join result of s satisfying each pac can also be estimated (details in the paper), let it be P_{pc}

Probabilistic Optimization

- Assume all PACs and the join condition are mutually independent
- Let N be the estimated number of possible join results which are better than the current top-k result [Theobald et al., VLDB'04]

$$P_{jc \wedge ac} = P_{jc} \times \prod_{pac \in ac} P_{pc}$$

- based on histogram
- The probability of having a future join result which is better than current top-k result can be estimated as

$$P = 1 - (1 - P_{jc \wedge ac})^N$$

- We stop the algorithm if $P \leq \varepsilon$

Outline

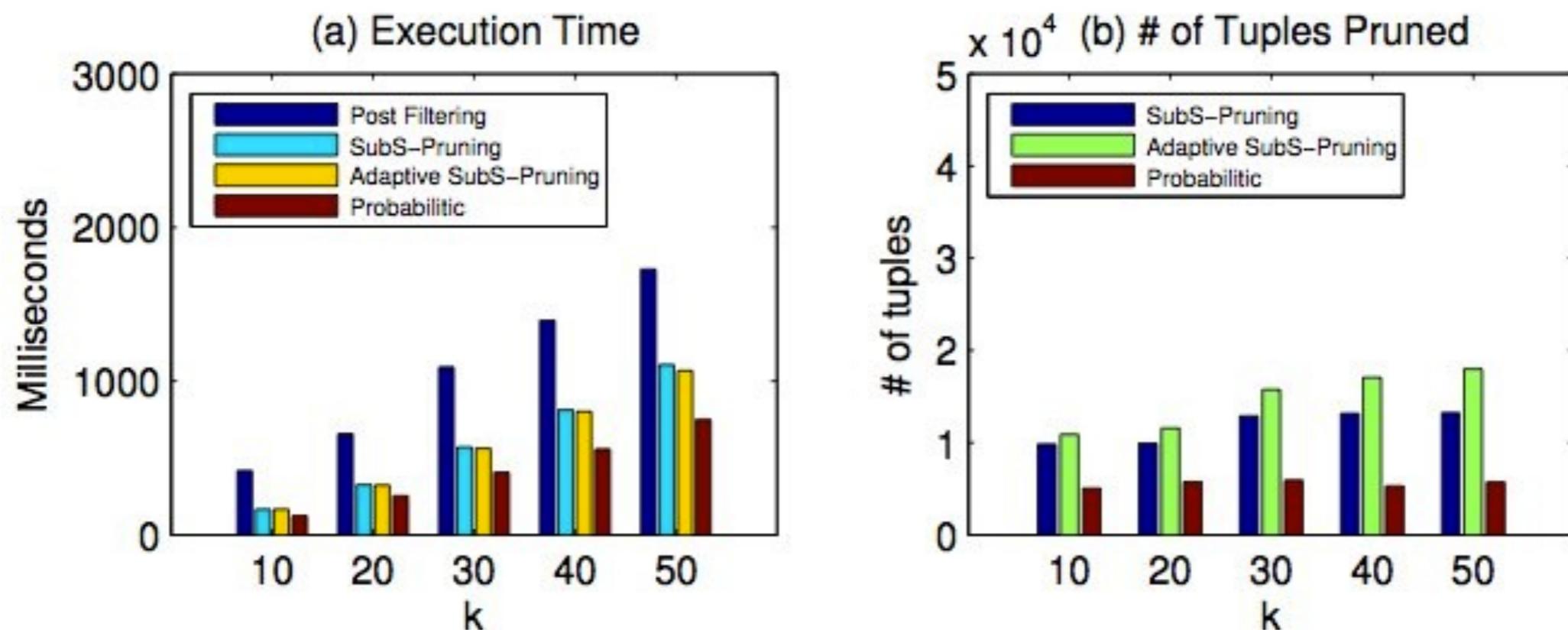
- Aggregation Constraints
- Deterministic Optimization
- Probabilistic Optimization
- Empirical Results

Data Setting

- Consider synthetic two relation datasets
 - For join attribute, the join selectivity fixed at 0.01
 - For other attributes, we consider two settings
 - Uniform attribute value distribution
 - Exponential attribute value distribution
 - Values are normalized to $[0, 1]$

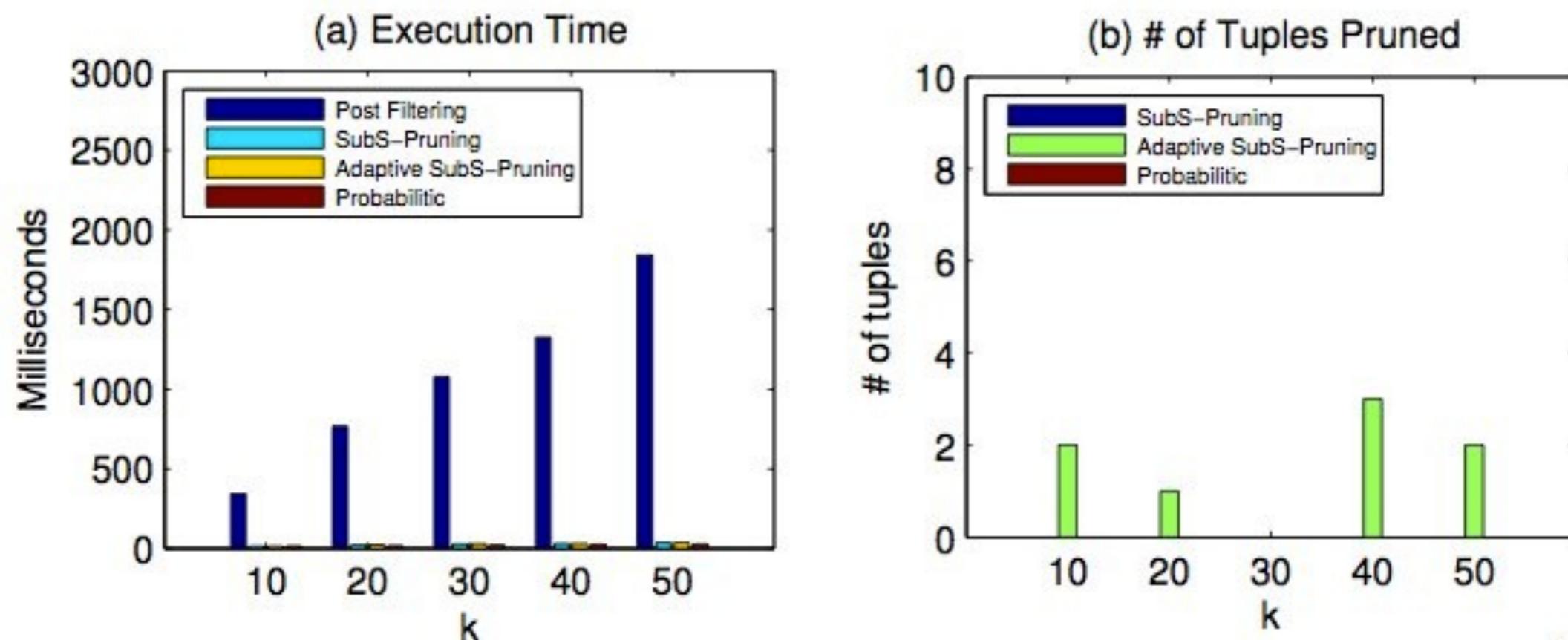
Efficiency Study (Single PAC)

- $\text{SUM}(A) \geq \lambda$, selectivity 10^{-5}
 - Subsumption-based pruning



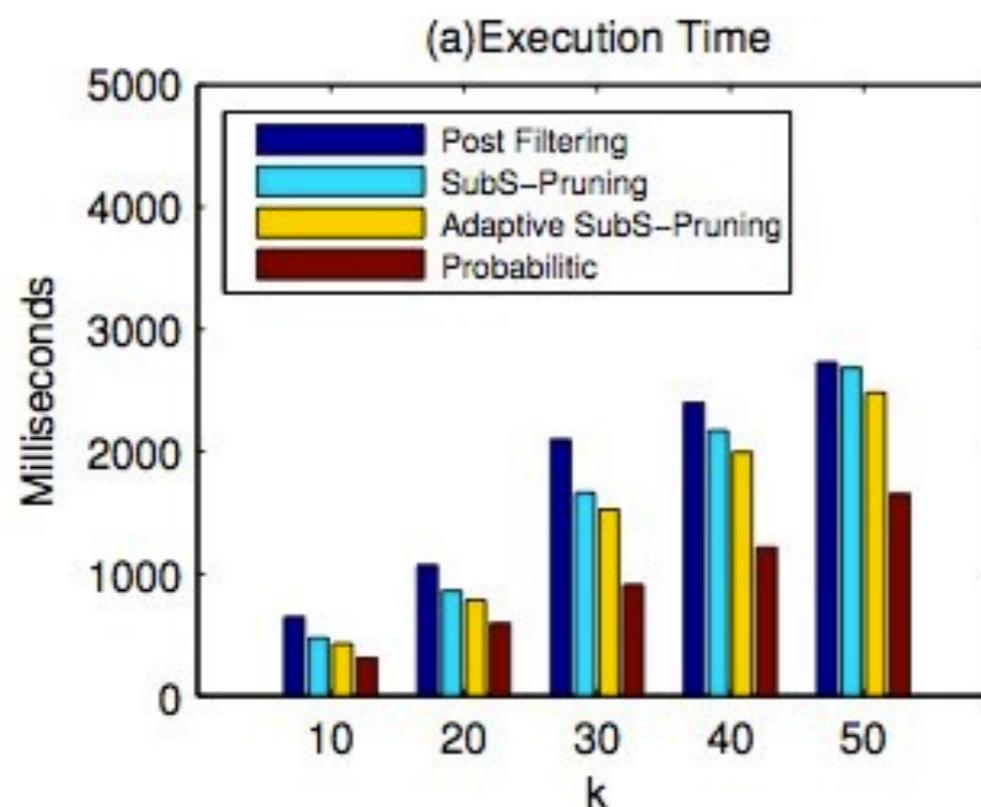
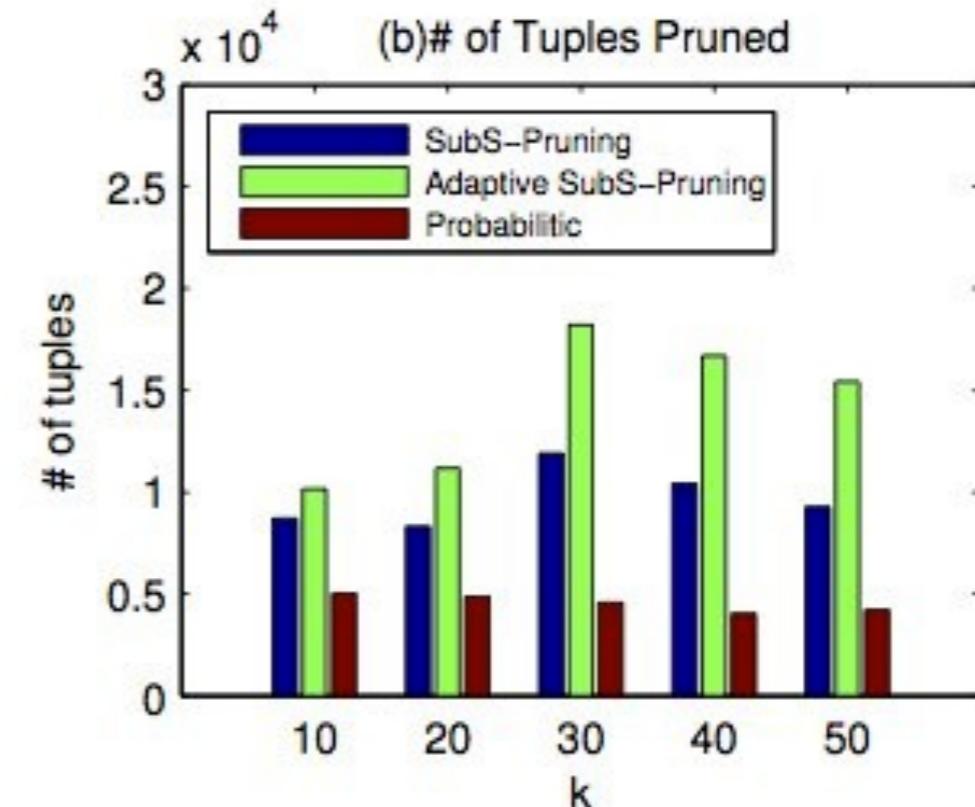
Efficiency Study (Single PAC)

- $\text{SUM}(A) \leq \lambda$, selectivity 10^{-5}
 - Anti-monotone & Subsumption-based pruning



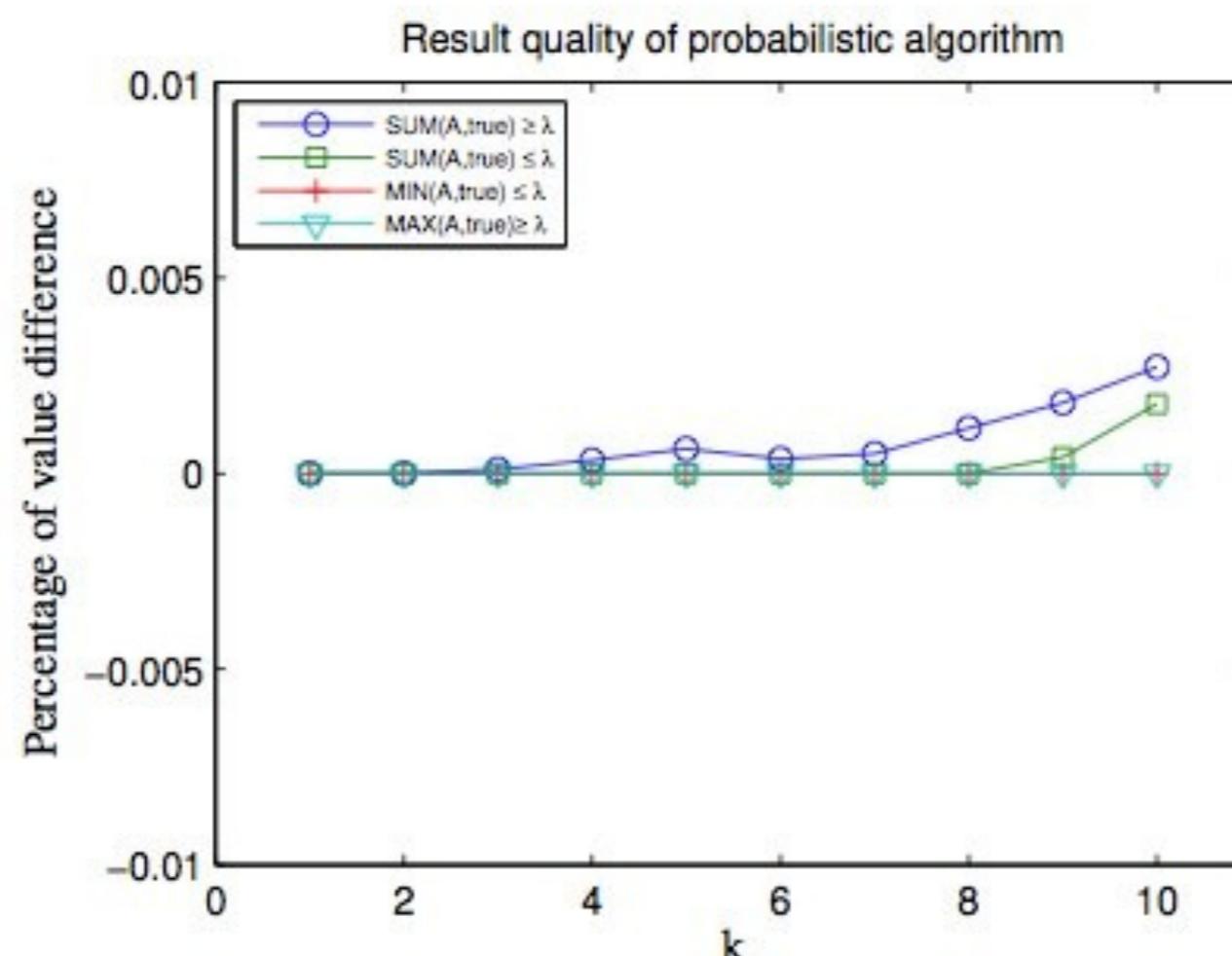
Efficiency Study (Multiple PACs)

- $\text{SUM}(A) \geq \lambda, \text{SUM}(B) \geq \lambda$, overall selectivity 10^{-5}



Quality of Probabilistic Algorithm

- Often much faster than deterministic algorithm
- The value of the top-k result get from the probabilistic algorithm is very close to the exact top-k result



Related Work

- Aggregation constraints
 - Well studied in the database community [Levy et al., VLDB'94][Ng et al., SIGMOD'98][Pei and Han, KDD'00][Ross et al., TCS'98]
 - Allows users to impose application-specific preferences
 - Optimizes the performance of the underlying algorithms

Related Work

- **Top-k query processing** [Illyas et al. CSUR'11]
 - **Threshold algorithm** [Fagin, PODS'01]
 - **Rank Join**
 - **Implemented inside RDBMS engines** [Illyas et al., SIGMOD'04, Li et al., SIGMOD'05]
 - **Indexing schemes** [Tsaparas et al., ICDE'03]
 - **Many variations** [Martinenghi and Tagliasacchi, PVLDB'10]

Related Work

- Top-k package recommendation
 - Fixed size package recommendation [Angel et al., EDBT'09]
 - Flexible size package recommendation [Xie et al., RecSys'10] [Parameswaran et al., TOIS'11]
 - The underlying problem is significantly harder
 - Outer join instead of natural/inner join
 - Techniques proposed in this work can still be applied to optimize the performance of the algorithm

Conclusion

- Applications: trip planning and curriculum planning
 - Aggregation constrained top-k query processing
- Naive algorithm works yet high memory computation cost
 - Deterministic optimization: tuple pruning
 - Probabilistic optimization
- Future work
 - Consider flexible size package recommendation under the current framework
 - Broader classes of constraints

Thank you.

Backup Slides