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Uncertain Databases

Uncertain databases (also called probabilistic databases) are
proposed to deal with uncertainty in a variety of application
domains, such as in sensor network and data cleaning

X-tuple is a data model to describe the exclusive correlations
between tuples in uncertain databases

Possible world semantics: A possible world W is a set of
tuples, such that for each generation rule r , W consists of
exactly one tuple in r if Pr(r) = 1, and zero or one tuple in r

if Pr(r) < 1.

The probability of W , denoted by Pr(W ), is the product of
the membership probabilities of all the tuples in W and all of
Pr(r̄), for each r where W contains no tuples from it.
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An Example of Uncertain Database

Time Radar Model Plate No Speed Prob

t1 11:45 L1 Honda X-123 120 1.0

t2 11:50 L2 Toyota Y-245 130 0.7

t3 11:35 L3 Toyota Y-245 95 0.3

t4 12:10 L4 Mazda W-541 90 0.4

t5 12:25 L5 Mazda W-541 110 0.6

t6 12:15 L6 Chevy L-105 105 0.5

t7 12:20 L7 Chevy L-105 85 0.4

The generation rules here are t2 ⊕ t3, t4 ⊕ t5, t6 ⊕ t7, and t1.
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Possible Worlds

World Prob

PW 1 = {t1, t2, t4, t6} 0.14

PW 2 = {t1, t2, t4, t7} 0.112

PW 3 = {t1, t2, t4} 0.028

PW 4 = {t1, t2, t5, t6} 0.21

PW 5 = {t1, t2, t5, t7} 0.168

PW 6 = {t1, t2, t5} 0.042

PW 7 = {t1, t3, t4, t6} 0.06

PW 8 = {t1, t3, t4, t7} 0.048

PW 9 = {t1, t3, t4} 0.012

PW 10 = {t1, t3, t5, t6} 0.09

PW 11 = {t1, t3, t5, t7} 0.072

PW 12 = {t1, t3, t5} 0.018
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Top-k Tuple Ranking in Uncertain Databases

Top-k tuples are the best k tuples in an uncertain database.
Two factors influence top-k tuples:

Tuple scores

Membership probabilities

Different Semantics of Top-k Tuples

U-Topk, U-kRanks (Soliman et al. ICDE2007)

PT-k query answer (Hua et al. SIGMOD2008)

Expected Rank (Yi et al. TKDE2008)

Parameterized Ranking Functions (Li et al. VLDB2009)
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Parameterized Ranking Function

PRFω: Υ(t) =
∑

W∈PW (t) ω(t, βW (t))× Pr(W )

PW (t) is the set of all the possible worlds containing t

βW (t) is the position of t in the possible world W

ω(t, i) is a weight function

Our restrictions: We restrict ω(t, i) to ω(i) and we assume ω(i) is
monotonically non-increasing.

PRF e : If we set ω(i) = αi (0 < α < 1), PRFω becomes PRF e .
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Algorithms to Find Top-k Tuples for PRF ω and PRF
e

For each tuple t in an uncertain database, compute the PRFω

value of t, then pick up the k tuples with highest PRFω values.
Similarly for PRF e .

Question: Is it necessary to compute the PRFω and PRF e value
for every tuple?

We can apply pruning to avoid substantial computation - Assuming
we know Υ(t1), if we know that Υ(t2) ≤ Υ(t1) ≤ threshold , then
we do not need to compute Υ(t2).
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Basic Idea for Generating Upper Bound

Given an uncertain database T , consider a set of q tuples
Q = {t1, ..., tq} and generation rules R = {r1, ..., rl} associated
with Q, such that every tuple in Q is in some generation rule in R

and every ri ∈ R contains at least one tuple in Q.

For any t ∈ Q, our interest is to find an upper bound of it. For
this, we want to find some real numbers ci such that

q∑

i=1

ciΥ(ti ) ≥ 0 (1)

Let the coefficient of t be c . If c < 0, (1) can be transformed to

Υ(t) ≤
∑

ti∈Q,ti 6=t

−
ci

c
Υ(ti ) (2)

That is, the value of Υ(t) cannot be higher than the right hand
side of (2), which is thus an upper bound of t.
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A New Representation of PRF ω

Let ti ∈ rd , for some rd ∈ R . Consider a tuple set η of size l , such
that ti ∈ η and each tuple in η is from a distinct generation rule in
R . We can write it as

{ts1 , ts2 , ..., tsd−1
, ti , tsd+1

, ..., tsl }

where tsj ∈ rj .

Denote by ∆i the set of all such tuple sets.

We divide ∆i into l sets. Let Sij be the set of tuple sets in ∆i each
of which contains j tuples which have higher scores than ti .
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Cont’d

Let η ∈ Sij , and PW (η) be the set of all possible worlds containing
all the tuples in η. We define

Υη(ti) =
∑

W∈PW (η)

ω(βW (ti ))× Pr(W )

For each non-empty Sij and any two tuple sets η1, η2 ∈ Sij , we can
prove that

Υη1(ti )

Pr(η1)
=

Υη2(ti )

Pr(η2)
.
For each non-empty Sij , we define the PRFω value ratio of Sij ,
denoted as Uij .

Uij =
Υη(ti )

Pr(η)
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Cont’d

A new representation of PRFω:

Υ(ti ) =
l−1∑

j=0

Uij × Pr(Sij) (3)

We can compute all Pr(Sij) in O(ql2 + qlτ) time, where τ is the
maximum number of real tuples involved in a generation rule.

We have the following conclusion:

(i) if j1 ≤ j2 then Uij1 ≥ Uij2, and

(ii) if score(ti1) ≥ score(ti2) then Ui1j ≥ Ui2j .

12 / 32



A General Upper Bound Method (I)

For equation (3), we can multiply both sides with a constant ci to
get

ciΥ(ti) = ci

l−1∑

j=0

Uij × Pr(Sij)

Then we add all q equations together to get

q∑

i=1

ciΥ(ti ) =

q∑

i=1

l−1∑

j=0

ci × Uij × Pr(Sij) (4)
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A General Upper Bound Method (II)

If we can transform the right hand side of the equation (4) to the
following formats:

m∑

k=1

ak(Uik jk − Ui ′
k
j ′
k
) (5)

or
m1∑

k=1

ak(Uik jk − Ui ′
k
j ′
k
) +

m2∑

k′=1

bk′Uik′ jk′
(6)

Then we can get
q∑

i=1

ciΥ(ti) ≥ 0

so we get

Υ(t) ≤
∑

ti∈Q,ti 6=t

−
ci

c
Υ(ti )
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A General Upper Bound Method (III)

Theorem: Let Q = {t1, ..., tq}. Assume t ∈ Q and there exists a
tuple s ∈ Q such that s 6= t and score(s) ≥ score(t). Then, there
exists at least one assignment θ of ci such that the right hand side
of (4) can be transformed to an expression in the form of (5), and
if not, to an expression in the form of (6).

Theorem: Let T be an uncertain table, Q = {t ′, t} be a set of
tuples from T . The upper bound u of t, induced by any
assignment w.r.t. Q, satisfies u ≥ Pr(t)

Pr(t′)Υ(t ′).

If we want to improve the upper bound of t, we may consider
adding more tuples in Q. When the size of Q becomes larger, we
may get better upper bound.
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Practical Pruning Method for PRF ω

For any two tuples t1 and t2 such that score(t1) ≥ score(t2)

If they are involved in one generation rule, we have

Υ(t2) ≤
Pr(t2)

Pr(t1)
Υ(t1)

If they are involved in two different generation rules, we have

If Pr(S10)
Pr(t1)

≥ Pr(S20)
Pr(t2)

, we have Υ(t2) ≤
Pr(t2)
Pr(t1)

Υ(t1).

If Pr(S10)
Pr(t1)

<
Pr(S20)
Pr(t2)

and the weight function is non-negative, we

have Υ(t2) ≤
Pr(S20)
Pr(S10)

Υ(t1). And we can also add one more

tuple into Q such that it is possible to get Υ(t2) ≤
Pr(t2)
Pr(t1)

Υ(t1).
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Pruning for PRF e

PRF e is a special case of PRFω, it has some special properties.

For any two tuples t1 and t2 (score(t1) ≥ score(t2)), we can get

Υ(t2) ≤
1

α
×

1

Pr(t1)
Υ(t1)

.

The time complexity for pruning is O(1).
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Experiments

Datasets:

Normal Datasets: The number of tuples involved in each
multi-tuple generation rules follows the normal distribution, so
does the probabilities of independent tuple and multi-tuple
generation rules

Special Datasets: The scores of tuples are in a descending
order and their membership probabilities are in an ascending
order

Real Dataset: A real data set is generated from International
Ice Patrol Iceberg Sighting Datasets

Weight Functions:

Randomly generated weight functions

ω(i) = n − i

PT-k query answer
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Computed Tuples for PRF ω on Normal Data Sets (I)
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Computed Tuples for PRF ω on Normal Data Sets (II)
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Computed Tuples for PRF ω on Normal Data Sets (III)
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Running Times for PRF ω on Normal Data Sets (I)
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Running Times for PRF ω on Normal Data Sets (II)
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Running Times for PRF ω on Normal Data Sets (III)
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Computed Tuples for PRF ω on Special Data Sets
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Running Times for PRF ω on Special Data Sets

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

R
u
n
n
i
n
g
 
t
i
m
e
 
(
s
e
c
o
n
d
)

swapping ratio

(b)Running time and swapping ratio

PT-k with pruning
random2 with pruning

PT-k without pruing
random2 without pruning

26 / 32



Computed Tuples for PRF ω on Real Data Set
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Running Times for PRF ω on Real Data Set
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Tightness of upper bounds on Real Data Set
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Comparison with (Hua et al. SIGMOD-08): Computed
Tuples
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Comparison with (Hua et al. SIGMOD-08): Running
Times

 0.1

 1

 10

 100

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
u
n
n
i
n
g
 
t
i
m
e
 
(
s
e
c
o
n
d
)

Expectation of membership probability

(a)Running time and membership prob.

PT-k with our pruning
random2 with our pruning

PT-k with simple prunig
random2 wiht simple pruning

31 / 32



Conclusion

We derived a new representation of PRFω values

We formulated a general framework to generate upper bounds
of PRFω values

We developed practical pruning methods for computing top-k
tuples for PRFω

We derived an early termination condition for PRF e

We showed experimentally that our pruning methods
generated significant improvements in the computation of
top-k tuples
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