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Uncertain Databases

@ Uncertain databases (also called probabilistic databases) are
proposed to deal with uncertainty in a variety of application
domains, such as in sensor network and data cleaning

@ X-tuple is a data model to describe the exclusive correlations
between tuples in uncertain databases

@ Possible world semantics: A possible world W is a set of
tuples, such that for each generation rule r, W consists of
exactly one tuple in r if Pr(r) =1, and zero or one tuple in r
if Pr(r) <1.

@ The probability of W, denoted by Pr(W), is the product of
the membership probabilities of all the tuples in W and all of
Pr(F), for each r where W contains no tuples from it.



An Example of Uncertain Database

Time | Radar | Model | Plate No | Speed | Prob
t; | 11:45 L1 Honda X-123 120 1.0
tr | 11:50 L2 Toyota | Y-245 130 0.7
t3 | 11:35 L3 Toyota | Y-245 95 0.3
ty | 12:10 L4 Mazda | W-541 90 0.4
ts | 12:25 L5 Mazda | W-541 110 0.6
ts | 12:15 L6 Chevy L-105 105 0.5
t; | 12:20 L7 Chevy L-105 85 0.4

The generation rules here are to & t3,t4 S t5, ts P t7, and ty.



Possible Worlds

World Prob
PWl — {t17t27t47t6} 0.14
P _ {t17t27t47t7} 0112

PW3 {t1,t,ts) | 0.028
'DW4 {t1,to,t5,ts} | 0.21
PW? = {t;,t, ts,t7} | 0.168

PW6 {ti. to, ts} | 0.042
PW7 {t1, 13, ta, ts} | 0.06
PW® = {t|,t3,ta, t7} | 0.048

PWQ {t1,t3,ts} | 0.012
PWI0 = {t;,t5, 5, ts} | 0.09
PWIT = {t1,t3, ts, t7} | 0.072

PWT2 = {t,t;,ts} | 0.018




Top-k Tuple Ranking in Uncertain Databases

Top-k tuples are the best k tuples in an uncertain database.
Two factors influence top-k tuples:

@ Tuple scores

@ Membership probabilities

Different Semantics of Top-k Tuples
@ U-Topk, U-kRanks (Soliman et al. ICDE2007)
@ PT-k query answer (Hua et al. SIGMOD2008)
@ Expected Rank (Yi et al. TKDE2008)
@ Parameterized Ranking Functions (Li et al. VLDB2009)



Parameterized Ranking Function

PRF“: T(t) = X wepw (s w(t, Bw(t)) x Pr(W)
@ PW(t) is the set of all the possible worlds containing t
® [Bw(t) is the position of t in the possible world W

@ w(t, i) is a weight function

Our restrictions: We restrict w(t, i) to w(i) and we assume w(/) is
monotonically non-increasing.

PRFe: If we set w(i) = /(0 < a < 1), PRF* becomes PRF®.



Algorithms to Find Top-k Tuples for PRF“ and PRF*¢

For each tuple t in an uncertain database, compute the PRF%
value of t, then pick up the k tuples with highest PRF“ values.
Similarly for PRF€.

Question: Is it necessary to compute the PRF“ and PRF€ value
for every tuple?

We can apply pruning to avoid substantial computation - Assuming
we know T(t1), if we know that T(t2) < T(t1) < threshold, then
we do not need to compute T(ty).



Basic Idea for Generating Upper Bound

Given an uncertain database T, consider a set of g tuples

Q = {t1,..., tq} and generation rules R = {ry, ..., r;} associated
with @, such that every tuple in @ is in some generation rule in R
and every r; € R contains at least one tuple in Q.

For any t € Q, our interest is to find an upper bound of it. For
this, we want to find some real numbers ¢; such that

q
Z C,'T(t,') >0 (]_)
i=1
Let the coefficient of t be c. If ¢ <0, (1) can be transformed to
Cj
T < Y, —ZT(h) (2)
LEQ, ti#t

That is, the value of T(t) cannot be higher than the right hand
side of (2), which is thus an upper bound of t.



A New Representation of PRF“

Let tj € ry, for some ry € R. Consider a tuple set 1) of size /, such
that t; €  and each tuple in 7 is from a distinct generation rule in
R. We can write it as

{t517 t527 (RS t5d717 ti7 t5d+17 (RS tS/}
where ts € 1j.

Denote by A; the set of all such tuple sets.

We divide A; into / sets. Let S be the set of tuple sets in A; each
of which contains j tuples which have higher scores than t;.
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Let n € Sjj, and PW(n) be the set of all possible worlds containing
all the tuples in 1. We define

Tt) = > w(Bw(t)) x Pr(W)

WePW (n)
For each non-empty S;; and any two tuple sets 71,12 € Sjj, we can

prove that
Tm(ti) _ Tnz(ti)
Pr(m) — Pr(n2)

For each non-empty Sj;, we define the PRF“ value ratio of Sj;,
denoted as Uj.
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A new representation of PRFY:

-1
T(t,') = Z U,'j X Pr(S,-j) (3)
j=0

We can compute all Pr(S;) in O(ql? + q/T) time, where 7 is the
maximum number of real tuples involved in a generation rule.

We have the following conclusion:
(I) if j1 < jo then U,'_,‘1 > U,'_,‘2, and
(i) if score(t;,) > score(t;,) then Uj; > Uy,;.
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A General Upper Bound Method (1)

For equation (3), we can multiply both sides with a constant ¢; to

get
I-1

C,'T(t,') =G Z U,J X Pr(S,J)
j=0

Then we add all g equations together to get

q I-1

Z C,‘T(t,') = ZZ Ci X U,J X PF(SU) (4)

i=1 j=0
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A General Upper Bound Method (1)

If we can transform the right hand side of the equation (4) to the
following formats:

Zak(Uikjk - U’I,J/:) (5)
k=1
or
my m2
Z ak(Uikjk — U,-;(J'L) + Z by Uik/jk/ (6)
k=1 k'=1
Then we can get
q
Z ¢iT(ti) >0
i=1

so we get

T < Y 2T

tEQ,ti#t
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A General Upper Bound Method (lII)

Theorem: Let Q = {t1,...,tq}. Assume t € Q and there exists a

tuple s € Q such that s # t and score(s) > score(t). Then, there
exists at least one assignment 6 of ¢; such that the right hand side
of (4) can be transformed to an expression in the form of (5), and
if not, to an expression in the form of (6).

Theorem: Let T be an uncertain table, @ = {t/,t} be a set of

tuples from T. The upper bound u of t, induced by any

assignment w.r.t. Q, satisfies u > E:((;))T(t/).

If we want to improve the upper bound of t, we may consider
adding more tuples in Q. When the size of Q becomes larger, we
may get better upper bound.
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Practical Pruning Method for PRFY

For any two tuples t; and t; such that score(t;) > score(ty)

@ If they are involved in one generation rule, we have

Pr(tp)
T(tp) < Pr(ti)T(tl)

@ If they are involved in two different generation rules, we have

Pr(S Pr(S. P
o If P’r((;f)) > ,;r((;;)), we have T(t;) < P;ggng(tl).

e If ’7;,((5;1”)) < ’zr((stz;)) and the weight function is non-negative, we

have T(t) < g:gjg;T(tl). And we can also add one more

tuple into @ such that it is possible to get T(t2) < ,’ijgng(tl).
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Pruning for PRF*

PRF¢€ is a special case of PRF“, it has some special properties.

For any two tuples t; and t; (score(t;) > score(t)), we can get

1 1
T(t2) < E X WT(tl)

The time complexity for pruning is O(1).
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Datasets:

@ Normal Datasets: The number of tuples involved in each
multi-tuple generation rules follows the normal distribution, so
does the probabilities of independent tuple and multi-tuple
generation rules

@ Special Datasets: The scores of tuples are in a descending
order and their membership probabilities are in an ascending
order

@ Real Dataset: A real data set is generated from International
Ice Patrol Iceberg Sighting Datasets

Weight Functions:
@ Randomly generated weight functions
o w(i)=n—i

@ PT-k query answer
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Computed Tuples for PRF* on Normal Data Sets (1)

Computed tuples

(a) Computed tuples and membership prob.
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Computed Tuples for PRF“ on Normal Data Sets (II)

(b) Computed tuples and rule complexity
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Computed Tuples for PRF“ on Normal Data Sets (1)

(c)Computed tuples and k
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Running Times for PRF“ on Normal Data Sets (1)

(second)

Running time

(a) Running time and membership prob.
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Running Times for PRF“ on Normal Data Sets (II)

(b) Running time and rule complexity
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Running Times for PRF“ on Normal Data Sets (lII)

(second)

Running time

(c)Running time and k
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Computed Tuples for PRF“ on Special Data Sets

(a) Computed tuples and swapping ratio
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Running Times for PRF“ on Special Data Sets

(b) Running time and swapping ratio
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Computed Tuples for PRF“ on Real Data Set

(a) Computed tuples and k
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Running Times for PRF“ on Real Data Set

(b) Running time and k
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Tightness of upper bounds on Real Data Set

(c)Real value vs. upper bound
4500 T T T T T

T T T
real vlaue —+—
4000 |- upper bound

3500 |-, .

|

3000 1 E
I 1 I

2500 t

i+
1/( W — M
2000 my| | |

k| AR
1500 -}[ \,_“J ‘M{ fj\} j wV» M e
\ T

1000 | |+

Value

P —S
———
—
p—

=

L

|
|
500 T +

| e

| |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Tuple index

29 /32



Comparison with (Hua et al. SIGMOD-08): Computed

Tuples

Computed tuples

(a) Computed tuples and membership prob.
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Comparison with (Hua et al. SIGMOD-08): Running

Times

(second)

Running time

(a) Running time and membership prob.
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Conclusion

(]

(]

We derived a new representation of PRF“ values

We formulated a general framework to generate upper bounds
of PRF® values

We developed practical pruning methods for computing top-k
tuples for PRF%

We derived an early termination condition for PRF€

We showed experimentally that our pruning methods
generated significant improvements in the computation of
top-k tuples
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