PRISM++

Update Rewriting and Integrity Constraint
Maintenance

Carlo Curino

Hyun J. Moon, Alin Deutsch, Carlo Zaniolo

* Information Systems Evolution... it's hard!

* Information Systems Evolution... it's hard!

Wednesday, August 31, 11

* Information Systems Evolution... it's hard!

Wednesday, August 31, 11

* Information Systems Evolution... it's hard!

Wednesday, August 31, 11

* Information Systems Evolution... it's hard!

Wednesday, August 31, 11

* Information Systems Evolution... it's hard!

Wednesday, August 31, 11

Motivation: Schema Evolution

* change schema
* migrate data
* fix queries/updates

* check/modify app code

Y Motivation: Schema Evolution

System System # of schema | lifetime
Name type versions (years)
ATutor Educational CMS 216 5.7
CERN DQ2 Scientific DB 51 1.3
Dekiwiki CRM, ERP 11 1.11
E107 CMS 16 5.4
Ensembl Scientific DB 412 9.8
KT-DMS CMS 105 4
Nucleus CMS CMS 51 6.7
PHPWiki Wiki 18 411
SlashCode (slashdot.org) News Website 256 8.10
Tikiwiki Wiki 99 0.9
Mediawiki (Wikipedia.org) | Wiki 242 6.2
Z.abbix Monitoring solution 196 8.3

* Average of 31 schema version per year

Wednesday, August 31, 11

Y Motivation: Schema Evolution

System System # of schema | lifetime
Name type versions (years)
ATutor Educational CMS 216 5.7
CERN DQ2 Scientific DB 51 1.3
Dekiwiki CRM, ERP 11 1.11
E107 CMS 16 5.4
Ensembl Scientific DB 412 9.8
KT-DMS CMS 105 4
Nucleus CMS CMS 51 6.7
PHPWiki Wiki 18 411
SlashCode (slashdot.org) News Website 256 8.10
Tikiwiki Wiki 99 0.9
Mediawiki (Wikipedia.org) | Wiki 242 6.2
Z.abbix Monitoring solution 196 8.3

* Average of 31 schema version per year

Wednesday, August 31, 11

Y Qur Previous Work

Structural Integrity
Evolution Constraints Evolution

Data

Queries

Updates

* Schema Modification Operators (SMOs)

* Query rewriting engine based on
chase&backchase

Y What are we going to do?

* Integrity Constraints Evolution

* Introduce integrity-constraint mod. operators

(ICMOs)
* Adapt schema modification operators (SMOs)

* Updates (and queries with negation)
* Novel update representation (query equivalence)

* Extended rewriting engine (support for negation

and ICMO:s)

Wednesday, August 31, 11

Y Evolution Operators

* Key idea: separate structural changes (SMOs)
from non-information preserving* ones (ICMOs)

*information-preserving = invertible mapping = constant information-capacity

Wednesday, August 31, 11

Y Evolution Operators

* Key idea: separate structural changes (SMOs)
from non-information preserving* ones (ICMOs)

Schema v1i

n a b C

*information-preserving = invertible mapping = constant information-capacity

Wednesday, August 31, 11

Y Evolution Operators

* Key idea: separate structural changes (SMOs)
from non-information preserving* ones (ICMOs)

Schema v1i

n a b C

Y Evolution Operators

* Key idea: separate structural changes (SMOs)
from non-information preserving* ones (ICMOs)

Schema v1i
b

DECOMPOSE R INTO S(a,b), T(a,c);

(Schema v1.1
b

k2
Cc

ALTER TABLE T DROP FOREIGN KEY fk2;

(Schema v2

's I

Wednesday, August 31, 11

Y Evolution Operators

* Key idea: separate structural changes (SMOs)
from non-information preserving* ones (ICMOs)

Schema v1i

DECOMPOSE R INTO S(a,b), T(a,c);

* changes to schema structure
* information preserving

ALTER TABLE T DROP FOREIGN KEY fk2;

* no changes to schema structure
* not information preserving

Wednesday, August 31, 11

Y Good/Bad News

* We force every SMO to be information-
preserving (data migration and query
rewriting paradise!)

e [CMOs:

e risk of data loss
* rewriting not obvious (new alg.)

* inverse operator (user input)

Y Data Migration

* Challenge: migrating towards a “tighter”
schema (data loss)

Y Data Migration

* Challenge: migrating towards a “tighter”

schema (data loss)

ALTER TABLE S
ADD PRIMARY KEY pkl(a)
<policy>;

B:5] o

Wednesday, August 31, 11

Y Data Migration

* Challenge: migrating towards a “tighter”

schema (data loss)

ALTER TABLE S
ADD PRIMARY KEY pkl(a)
<policy>;

(s 1B bbi s IENIEN

* <policy>:
* CHECK: migrates data only if constraint already holds
* ENFORCE: “canonical repair” by moving all violating

tuples to special table S a] b |

Wednesday, August 31, 11

Y Query Rewriting

* Challenge: evolution towards a “looser”
schema (inverse is not inf-preserving)

Wednesday, August 31, 11

Y Query Rewriting

* Challenge: evolution towards a “looser”
schema (inverse is not inf-preserving)

ALTER TABLE T
DROP FOREIGN KEY fk2;

—

Wednesday, August 31, 11

Y Query Rewriting

* Challenge: evolution towards a “looser”
schema (inverse is not inf-preserving)

ALTER TABLE T
DROP FOREIGN KEY fk2;

ALTER TABLE T
ADD FOREIGN KEY fk2(a)

REFERENCES S(a) <policy>;

Wednesday, August 31, 11

Y Query Rewriting

* Challenge: evolution towards a “looser”
schema (inverse is not inf-preserving)

ALTER TABLE T
DROP FOREIGN KEY fk2;

ALTER TABLE T
ADD FOREIGN KEY fk2(a)

REFERENCES S(a) <policy>;

* <policy>:
* CHECK: checks constraint before running query
* ENFORCE: limits query scope to non-violating tuples
* IGNORE: runs query as-is

Wednesday, August 31, 11

Y Query Rewriting Example

* ENFORCE: limits query scope to non-violating tuples

Y Query Rewriting Example

ALTER TABLE S
DROP PRIMARY KEY;

; — T
= s KN

ALTER TABLE S

ADD PRIMARY KEY pkl(a)
ENFORCE;

* ENFORCE: limits query scope to non-violating tuples

day, August 31, 11

Y Query Rewriting Example

e
(SELECT a,b FROM sj

WHERE a=1;

ALTER TABLE S
v DROP PRIMARY KEY;

; — T
pumn s KN

ALTER TABLE S

ADD PRIMARY KEY pkl(a)
ENFORCE;

* ENFORCE: limits query scope to non-violating tuples

Wednesday, August 31, 11

Y Query Rewriting Example
(Q’)

(Q) (SELECT a,b FROM S A
WHERE a=1 and NOT EXISTS
(SELECT a,b FROM Sj (SELECT * FROM S as s2
WHERE a=1; WHERE S.a=s2.a AND
S.b!=s2.b);)
ALTER TABLE S
v DROP PRIMARY KEY; \/

b —
G

ALTER TABLE S

ADD PRIMARY KEY pkl(a)
ENFORCE;

lEiI a ‘ b b

* ENFORCE: limits query scope to non-violating tuples

Wednesday, August 31, 11

* Intuition: rewrite independently negative and

positive part of the query

Wednesday, August 31, 11

* Intuition: rewrite independently negative and

positive part of the query
- (Q)

(SELECT a,b FROM S)
WHERE a=1 and NOT EXISTS
(SELECT * FROM S as s2

WHERE S.a=s2.a AND
_ S.b!=s2.b);)

V RENAME COLUMN b
IN S TO x;

Ea‘bb i

s ENEN

Wednesday, August 31, 11

* Intuition: rewrite independently negative and

positive part of the query

(Q')

(SELECT a,b FROM S)

WHERE a=1 and NOT EXISTS
(SELECT * FROM S as s2

WHERE S.a=s2.a AND
_ S.b!=s2.b);)

\
‘Eil a ‘ b b

Wednesday, August 31, 11

{ Q")

 SELECT a,x FROM S)

WHERE a=1 and NOT EXISTS
(SELECT * FROM S as s2

WHERE S.a=s2.a AND
S.x!=s2.x);

\. J

RENAME COLUMN b V

IN S TO x;

—

s ENEN

* Intuition: rewrite independently negative and

positive part of the query

- Q')

(SELECT a,b FROM S)

WHERE a=1 and NOT EXISTS
(SELECT * FROM S as s2

WHERE S.a=s2.a AND
_ S.b!=s2.b);)

\
'Eil a ‘ b b

{ Q")

 SELECT a,x FROM S)

WHERE a=1 and NOT EXISTS
(SELECT * FROM S as s2

WHERE S.a=s2.a AND
S.x!=s2.x);

\. J

RENAME COLUMN b V

IN S TO x;

—

s ENEN

This application of Chase & Back-

Chase is sound but not complete

Wednesday, August 31, 11

Structural Integrity
Evolution Constraints Evolution

Data

Queries

Updates

* Introduce ICMOs, Adapted SMOs
* Extended Query Rewriting Engine (ICMOs + neg.)

Y Update Rewriting (through SMOs)

* Intuition: reuse query rewriting engine to tackle

update rewriting

Y Update Rewriting (through SMOs)

* Intuition: reuse query rewriting engine to tackle

update rewriting

[Schemcﬂ}

[SchemaZ} ee

Y Update Rewriting (through SMOs)

* Intuition: reuse query rewriting engine to tackle

update rewriting

@ ()G o

[SchemaZ} ee

Wednesday, August 31, 11

Y Update Rewriting (through SMOs)

* Intuition: reuse query rewriting engine to tackle

update rewriting

Rewriting

[SchemaZ} 22 iaefore == Qlafter

Wednesday, August 31, 11

Y Update Rewriting (through SMOs)

* Intuition: reuse query rewriting engine to tackle

update rewriting

Rewriting

Wednesday, August 31, 11

Y A New Update Representation

* Intuition: represent updates as (equivalence
between) queries, exploit query rewriting

Qbefore == Qcll:ter

Y A New Update Representation

* Intuition: represent updates as (equivalence
between) queries, exploit query rewriting

Qbefore == Qafter

UPDATE S SELECT a,’/ SELECT a,b
SET b=7 FROM S —— FROM S;
WHERE a=1; WHERE a=1;

UNION
SELECT a,b
FROM S
WHERE a!=1;

Wednesday, August 31, 11

Y Update Rewriting (through ICMOs)

* Intuition: the policies specify popular special-

cases of view-update problem

Y Update Rewriting (through ICMOs)

* Intuition: the policies specify popular special-

cases of view-update problem

* <policy>:
* CHECK: checks constraint before and after
running update
* ENFORCE: limits update scope to non-violating
tuples, checks violation-set is not changed
* IGNORE: runs update as-is (allows side effects)

Y Optimization

e Challenge: rewriting complexity depends on mapping
size (foreign keys and ICMOs make things harder)

* Solution: extract templates, cache rewritings

rewriting time (ms)

100k

10k
1k Prunin

. N
o
o

—l
- O

Baseline

Pruning &
Caching | Caching

I L F I JI-,I | I‘I VT T 7T 1T T 1
25 31 38 43 48 53
software releases

Ensembl genetic DB

Wednesday, August 31, 11

)

e
o
o
>

backchase

A
- O
=~ X

no
optimizer

—i
o

rewriting time (ms
o
o

e

1 5 10 15 20
schema connectivity (#tables)

Synthetic Dataset

Wikipedia hit/miss ratio: up to 88M

Y Conclusion

* Prism++ is a high-performance practical system
supporting DB schema-evolution:

Structural Integrity
Evolution Constraints Evolution

Data

Queries

Updates

For More info contact me:
krl@yahoo-inc.com

Wednesday, August 31, 11

mailto:krl@yahoo-inc.com
mailto:krl@yahoo-inc.com

* Solution: effectiveness of template caching

Statement type | number of | avg hit/miss | max hit/miss

templates ratio ratio
update 142 5,661.21 80,870
select 1294 248,005.41 88,740,689
select™ 610 526,096.72 88,740,689

*with improved template extraction factorizing DB names.

|

Statements | execution time | rewriting time | overhead
S1 77.37 ms 1 ms 1.29%
S2 21.674 ms 1 ms 4.6%

S3 48.2 ms 1 ms 2.07%

Wednesday, August 31, 11

Y Chase & BackChase

* Intuition: behind the scene Disjunctive Embedded
Dependencies and chase-based rewritings

JOIN TABLE gene,g_descr SELECT description
INTO gene FROM gene g, g descr gd
WHERE gene.id=g_descr.id WHERE g.id=gd.id AND

g.region=1;

I
‘ inverse '

DECOMPOSE TABLE gene
INTO g_descr(id,description),
gene(id,type,region,start,end);

derive mapping
mapping (S2-S3) : chase-based

genes(z,y, z,w, k,l) = genea(z,y,2,w,k),g-descr(z,!) rewriting
genes(z,y, z,w, k, 1), g-descr(z,l) = genes(z,y,z, w,k,)

SELECT description
FROM gene g
WHERE g.region=1;

input query
(on S2)

rewritten query
(on S3)

Wednesday, August 31, 11

Y Update Rewriting through SMO: Example

UPDATE exon SET end="342" WHERE id=l1
DECOMPOSE TABLE exon

INTO eregion(id,region,start,end),

etype(id,typf);

_ SELECT id,type,region,start, "342"
inverse QO || FROM exon WHERE id=1
w% UNION
: Q || SELECT id,type,region,start,end
JOIN TABLE eregion,etype FROM ex;n'W?E)Ré igf—ll !
WHERE eregrion.id=etype.id -
p . = .
derive mapping qq:) SELECT id,type,region,start,end
4V FROM exon

logical mappin -
g
query separately

SELECT r.id,type,region,start, "342"

FROM eregion r,etype t WHERE r.id =1 AND r.id = t.id
UNION

SELECT r.id,type,region,start,end

FROM eregion r, etype t WHERE r.id !=1 AND r.id = t.id

before

SELECT r.id,type,region,start,end
FROM eregion' r, etype' t WHERE r.id = t.id

after

query to update rep

UPDATE eregion r,etype t SET r.end = "342"
WHERE r.id=1] AND r.id = t.id

Wednesday, August 31, 11

Y Update Rewriting ICMOs: Example

ALTER TABLE exon
DROP PRIMARY KEY pk1 INSERT INTO exon VALUES (1,2,3,4,5)

|
‘ inverse ' l
ALTER TABLE exon

| ICMO
ADD PRIMARY KEY pk1(id) rewriting

CHECK

@pre = SELECT * FROM exon e,exon e2
WHERE e.id=e2.id AND e.rank=e2.rank AND
(e.type!=e2.type OR e.start!=e2.start OR e.end!=e2.end);
@post = SELECT * FROM exon e WHERE e.id=1;

IF (isempty (@pre)&& isempty(@post)) INSERT INTO exon VALUES(1,2,3,4,5)
ELSE RETURN ERROR;

Wednesday, August 31, 11

