
PRISM++
Update Rewriting and Integrity Constraint 

Maintenance

Carlo Curino

Hyun J. Moon, Alin Deutsch, Carlo Zaniolo 
Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



Motivation

• Information Systems Evolution... it’s hard!

Wednesday, August 31, 11



      Motivation: Schema Evolution

• change schema

• migrate data

• fix queries/updates 

• check/modify app code
Wednesday, August 31, 11



      Motivation: Schema Evolution
Table 4: Experimental Environments

Environment Description
CPUs Quad-Core Xeon 1.6GHz (x2)
Memory 4GB
Hard Disk 3TB (500GB x6), RAID-5
OS Distribution Linux Ubuntu Server 6.06
OS Kernel Linux 2.6.15-54 server
Java Sun Java 1.6.0-b105
CPUs Quad-Core Xeon 2.26GHz (x2)
Memory 24GB
Hard Disk 6TB (2TB x6), HW RAID-5
OS Distribution Linux Ubuntu Server 9.10
OS Kernel Linux 2.6.31-19 server
Java Sun Java 1.6.0 20-b02

speed up. The effect of this technique is included in the baseline
performance in Section 5, since present in prior literature.

Another significant performance improvement is obtained by an
extended version of the pruning technique appeared in [29]. We re-
fer to query footprint as the portion of the schema required to answer
the query. Pruning operates by analyzing the input query footprint
and removing from the input of the C&B procedure all the logical
mappings that are not necessary for the rewriting (i.e., predicates
about portions of the schema not included in the query footprint).
In addition, pruning removes all the schema versions from a schema
history not required (e.g., prior to the schema version used in the
query). The optimization technique implemented in PRISM++ is a
significant extension of the one sketched in [29]. Our implementa-
tion can, in fact, also operate under presence of foreign keys (i.e., by
extending the notion of query footprint to all the tables directly or
indirectly reachable via foreign keys from the initial footprint) and
can manage update statements, by extending the analysis component
to deal with update syntax. It is thus presented as an optimization in
our experimental Section 5.

Furthermore, the actual implementation of the algorithms pre-
sented here has been subject to further optimization. In fact, some of
the queries produced by the translation steps (to represent an update)
have identical portions. Whenever possible we avoid invocations to
the C&B rewriting procedure by reusing results produced for simi-
lar queries (this is also part of our baseline performance). A more
general-purpose caching technique is presented next.

D.2 Caching
Observing the workloads from Wikipedia, Ensembl and the other

information systems from Table 5 we noticed that it is very common
for the workload of a system to be based on a rather limited num-
ber of query/update templates, which are parametrized and reused
multiple times (this is natural, since most queries are issued by ap-
plications, in which they are hard-coded as prepared SQL queries).
PRISM++ exploits this fact by employing a caching strategy imple-
mented as follows: (i) given an input statement (query or update),
PRISM++ extracts a template (by parametrizing it, as for prepared
SQL statements), (ii) look-up in an hash-map structure for a match-
ing input template, (iii) retrieve the rewritten template if available,
and (iv-a) substitute the parameters with the original input values. In
case of a cache miss (iv-b) the query/update is rewritten and the sys-
tem extracts a template from the rewritten query/update and stores it
in the cache for later use. Testing with the Wikipedia workload we
also noticed that many templates we extracted only differed in the
name of the DB they were targeting (Wikipedia has many DB shar-
ing an identical schema). To this purpose we adapted the template
extraction to be able to cache templates across multiple DBs sharing
the same schema. This simple feature (that can be turned on or off)
proved very effective in the case of Wikipedia, almost doubling the
effectiveness of the cache.

Table 5: Evolution histories of popular IS in our dataset
System System # of schema lifetime
Name type versions (years)
ATutor Educational CMS 216 5.7
CERN DQ2 Scientific DB 51 1.3
Dekiwiki CRM, ERP 11 1.11
E107 CMS 16 5.4
Ensembl Scientific DB 412 9.8
KT-DMS CMS 105 4
Nucleus CMS CMS 51 6.7
PHPWiki Wiki 18 4.11
SlashCode (slashdot.org) News Website 256 8.10
Tikiwiki Wiki 99 0.9
Mediawiki (Wikipedia.org) Wiki 242 6.2
Zabbix Monitoring solution 196 8.3

D.3 Back and Forth from SQL
The last question that remains to be answered is how to translate

back and forth between the SQL and query-equivalence-based rep-
resentation of updates. For insert SQL statement this operation is
trivial, since both representations positively state what should ap-
pear in the DB after the execution of the statement, and the transla-
tion is purely syntactical. For delete, there is a mismatch between
SQL and the query-based representation, where in SQL we specify
what to remove, in the mapping-based representation we described
the complement, i.e., what to keep. Update shares the same issues
of delete, where tuples are not removed but modified. Both trans-
lations are, therefore, based on inverting the conditions (potentially
involving joins with other tables), while propagating the tables to be
removed/updated. The system completely automates this process as
discussed in Section 5.

E. EXPERIMENTAL SETTINGS
The experiments have been conducted on a system with the HW/SW

configuration shown in Table 4. The more powerful machine has
been used to evaluate the overhead of query rewriting w.r.t. to query
execution. Table 5 reports the complete set of evolution histories
that we used from [10].

E.1 Effect of foreign key on rewriting time
The results reported in Figure 5B are based on the following ex-

periment. We tested with five simple queries (results for updates
are derived since they rely on the same algorithm) averaging the re-
sults for each structural SMOs (ICMO rewriting is not based on the
chase and is thus not affected by the foreign keys). We first ver-
ified how the actual schema layout is not relevant to the rewriting
performance, i.e., having N tables directly reachable with a single-
hop from the query footprint or N tables reachable through a long
chains of foreign keys will lead to the same rewriting performance.
We then synthetically generated several schemas with mixed proper-
ties (few long chains and few directly reachable tables) but with in-
creasing numbers of tables reachable from the query footprint. The
number of reachable tables directly influence the size of the map-
ping, expressed as DEDs, that we feed into the chase engine MARS.
Rewriting time are presented for both the scenario in which we use
back-chase to improve the output query quality and the rewriting
time when no query optimization is performed. Thanks to the na-
ture of the backchase-based optimizer we utilize [14] it is possible
to achieve partial optimization by using a subsets of the available
constraints, thus achieving a trade-off between output query opti-
mization and rewriting time.

E.2 Wikipedia Queries
The total number of query and update templates is typically rather

small (less than a thousand for Wikipedia), therefore, the cache sub-

127

• Average of 31 schema version per year

Wednesday, August 31, 11



      Motivation: Schema Evolution
Table 4: Experimental Environments

Environment Description
CPUs Quad-Core Xeon 1.6GHz (x2)
Memory 4GB
Hard Disk 3TB (500GB x6), RAID-5
OS Distribution Linux Ubuntu Server 6.06
OS Kernel Linux 2.6.15-54 server
Java Sun Java 1.6.0-b105
CPUs Quad-Core Xeon 2.26GHz (x2)
Memory 24GB
Hard Disk 6TB (2TB x6), HW RAID-5
OS Distribution Linux Ubuntu Server 9.10
OS Kernel Linux 2.6.31-19 server
Java Sun Java 1.6.0 20-b02

speed up. The effect of this technique is included in the baseline
performance in Section 5, since present in prior literature.

Another significant performance improvement is obtained by an
extended version of the pruning technique appeared in [29]. We re-
fer to query footprint as the portion of the schema required to answer
the query. Pruning operates by analyzing the input query footprint
and removing from the input of the C&B procedure all the logical
mappings that are not necessary for the rewriting (i.e., predicates
about portions of the schema not included in the query footprint).
In addition, pruning removes all the schema versions from a schema
history not required (e.g., prior to the schema version used in the
query). The optimization technique implemented in PRISM++ is a
significant extension of the one sketched in [29]. Our implementa-
tion can, in fact, also operate under presence of foreign keys (i.e., by
extending the notion of query footprint to all the tables directly or
indirectly reachable via foreign keys from the initial footprint) and
can manage update statements, by extending the analysis component
to deal with update syntax. It is thus presented as an optimization in
our experimental Section 5.

Furthermore, the actual implementation of the algorithms pre-
sented here has been subject to further optimization. In fact, some of
the queries produced by the translation steps (to represent an update)
have identical portions. Whenever possible we avoid invocations to
the C&B rewriting procedure by reusing results produced for simi-
lar queries (this is also part of our baseline performance). A more
general-purpose caching technique is presented next.

D.2 Caching
Observing the workloads from Wikipedia, Ensembl and the other

information systems from Table 5 we noticed that it is very common
for the workload of a system to be based on a rather limited num-
ber of query/update templates, which are parametrized and reused
multiple times (this is natural, since most queries are issued by ap-
plications, in which they are hard-coded as prepared SQL queries).
PRISM++ exploits this fact by employing a caching strategy imple-
mented as follows: (i) given an input statement (query or update),
PRISM++ extracts a template (by parametrizing it, as for prepared
SQL statements), (ii) look-up in an hash-map structure for a match-
ing input template, (iii) retrieve the rewritten template if available,
and (iv-a) substitute the parameters with the original input values. In
case of a cache miss (iv-b) the query/update is rewritten and the sys-
tem extracts a template from the rewritten query/update and stores it
in the cache for later use. Testing with the Wikipedia workload we
also noticed that many templates we extracted only differed in the
name of the DB they were targeting (Wikipedia has many DB shar-
ing an identical schema). To this purpose we adapted the template
extraction to be able to cache templates across multiple DBs sharing
the same schema. This simple feature (that can be turned on or off)
proved very effective in the case of Wikipedia, almost doubling the
effectiveness of the cache.

Table 5: Evolution histories of popular IS in our dataset
System System # of schema lifetime
Name type versions (years)
ATutor Educational CMS 216 5.7
CERN DQ2 Scientific DB 51 1.3
Dekiwiki CRM, ERP 11 1.11
E107 CMS 16 5.4
Ensembl Scientific DB 412 9.8
KT-DMS CMS 105 4
Nucleus CMS CMS 51 6.7
PHPWiki Wiki 18 4.11
SlashCode (slashdot.org) News Website 256 8.10
Tikiwiki Wiki 99 0.9
Mediawiki (Wikipedia.org) Wiki 242 6.2
Zabbix Monitoring solution 196 8.3

D.3 Back and Forth from SQL
The last question that remains to be answered is how to translate

back and forth between the SQL and query-equivalence-based rep-
resentation of updates. For insert SQL statement this operation is
trivial, since both representations positively state what should ap-
pear in the DB after the execution of the statement, and the transla-
tion is purely syntactical. For delete, there is a mismatch between
SQL and the query-based representation, where in SQL we specify
what to remove, in the mapping-based representation we described
the complement, i.e., what to keep. Update shares the same issues
of delete, where tuples are not removed but modified. Both trans-
lations are, therefore, based on inverting the conditions (potentially
involving joins with other tables), while propagating the tables to be
removed/updated. The system completely automates this process as
discussed in Section 5.

E. EXPERIMENTAL SETTINGS
The experiments have been conducted on a system with the HW/SW

configuration shown in Table 4. The more powerful machine has
been used to evaluate the overhead of query rewriting w.r.t. to query
execution. Table 5 reports the complete set of evolution histories
that we used from [10].

E.1 Effect of foreign key on rewriting time
The results reported in Figure 5B are based on the following ex-

periment. We tested with five simple queries (results for updates
are derived since they rely on the same algorithm) averaging the re-
sults for each structural SMOs (ICMO rewriting is not based on the
chase and is thus not affected by the foreign keys). We first ver-
ified how the actual schema layout is not relevant to the rewriting
performance, i.e., having N tables directly reachable with a single-
hop from the query footprint or N tables reachable through a long
chains of foreign keys will lead to the same rewriting performance.
We then synthetically generated several schemas with mixed proper-
ties (few long chains and few directly reachable tables) but with in-
creasing numbers of tables reachable from the query footprint. The
number of reachable tables directly influence the size of the map-
ping, expressed as DEDs, that we feed into the chase engine MARS.
Rewriting time are presented for both the scenario in which we use
back-chase to improve the output query quality and the rewriting
time when no query optimization is performed. Thanks to the na-
ture of the backchase-based optimizer we utilize [14] it is possible
to achieve partial optimization by using a subsets of the available
constraints, thus achieving a trade-off between output query opti-
mization and rewriting time.

E.2 Wikipedia Queries
The total number of query and update templates is typically rather

small (less than a thousand for Wikipedia), therefore, the cache sub-

127

• Average of 31 schema version per year

Wednesday, August 31, 11



Our Previous Work

• Schema Modification Operators (SMOs)

• Query rewriting engine based on 
chase&backchase

Structural
Evolution

Integrity
Constraints Evolution

Data

Queries

Updates

Wednesday, August 31, 11



       What are we going to do?
• Integrity Constraints Evolution

• Introduce integrity-constraint mod. operators 
(ICMOs)

• Adapt schema modification operators (SMOs)

• Updates (and queries with negation)

• Novel update representation (query equivalence)

• Extended rewriting engine (support for negation 
and ICMOs)

Wednesday, August 31, 11



Evolution Operators
• Key idea: separate structural changes (SMOs) 

from non-information preserving* ones (ICMOs)

*information-preserving = invertible mapping = constant information-capacity
Wednesday, August 31, 11



Evolution Operators
• Key idea: separate structural changes (SMOs) 

from non-information preserving* ones (ICMOs)

cbaR
Schema v1

*information-preserving = invertible mapping = constant information-capacity
Wednesday, August 31, 11



Evolution Operators
• Key idea: separate structural changes (SMOs) 

from non-information preserving* ones (ICMOs)

cbaR
Schema v1

Schema v2

caT

baS
fk1

Wednesday, August 31, 11



Evolution Operators
• Key idea: separate structural changes (SMOs) 

from non-information preserving* ones (ICMOs)

cbaR
Schema v1

Schema v2

caT

baS
fk1

Schema v1.1

caT

baS
fk1 fk2

DECOMPOSE R INTO S(a,b), T(a,c);

ALTER TABLE T DROP FOREIGN KEY fk2;

Wednesday, August 31, 11



Evolution Operators
• Key idea: separate structural changes (SMOs) 

from non-information preserving* ones (ICMOs)

cbaR
Schema v1

•no changes to schema structure
•not information preserving

•changes to schema structure
•information preserving

Schema v2

caT

baS
fk1

Schema v1.1

caT

baS
fk1 fk2

DECOMPOSE R INTO S(a,b), T(a,c);

ALTER TABLE T DROP FOREIGN KEY fk2;

Wednesday, August 31, 11



Good/Bad News

• We force every SMO to be information-
preserving (data migration and query 
rewriting paradise!)

• ICMOs:
• risk of data loss
• rewriting not obvious (new alg.)
• inverse operator (user input)

Wednesday, August 31, 11



Data Migration
• Challenge: migrating towards a “tighter” 

schema (data loss)

Wednesday, August 31, 11



Data Migration
• Challenge: migrating towards a “tighter” 

schema (data loss)

ALTER TABLE S 
ADD PRIMARY KEY pk1(a) 
<policy>;

baSbaS

Wednesday, August 31, 11



Data Migration
• Challenge: migrating towards a “tighter” 

schema (data loss)

ALTER TABLE S 
ADD PRIMARY KEY pk1(a) 
<policy>;

baSbaS

•<policy>:
•CHECK: migrates data only if constraint already holds
•ENFORCE: “canonical repair” by moving all violating 

tuples to special table baSviol

Wednesday, August 31, 11



Query Rewriting
• Challenge: evolution towards a “looser” 

schema (inverse is not inf-preserving)

Wednesday, August 31, 11



Query Rewriting
• Challenge: evolution towards a “looser” 

schema (inverse is not inf-preserving)

caT

baS
fk1 fk2

ALTER TABLE T 
DROP FOREIGN KEY fk2;

caT

baS
fk1

Wednesday, August 31, 11



Query Rewriting
• Challenge: evolution towards a “looser” 

schema (inverse is not inf-preserving)

caT

baS
fk1 fk2

ALTER TABLE T 
DROP FOREIGN KEY fk2;

caT

baS
fk1

ALTER TABLE T 
ADD FOREIGN KEY fk2(a)
REFERENCES S(a) <policy>;

Wednesday, August 31, 11



•<policy>:
•CHECK: checks constraint before running query
•ENFORCE: limits query scope to non-violating tuples
•IGNORE: runs query as-is

Query Rewriting
• Challenge: evolution towards a “looser” 

schema (inverse is not inf-preserving)

caT

baS
fk1 fk2

ALTER TABLE T 
DROP FOREIGN KEY fk2;

caT

baS
fk1

ALTER TABLE T 
ADD FOREIGN KEY fk2(a)
REFERENCES S(a) <policy>;

Wednesday, August 31, 11



Query Rewriting Example

•ENFORCE: limits query scope to non-violating tuples
Wednesday, August 31, 11



ALTER TABLE S 
ADD PRIMARY KEY pk1(a) 
ENFORCE;

ALTER TABLE S
DROP PRIMARY KEY;

baS baS

Query Rewriting Example

•ENFORCE: limits query scope to non-violating tuples
Wednesday, August 31, 11



SELECT a,b FROM S 
WHERE a=1;

ALTER TABLE S 
ADD PRIMARY KEY pk1(a) 
ENFORCE;

ALTER TABLE S
DROP PRIMARY KEY;

baS baS

Q

Query Rewriting Example

•ENFORCE: limits query scope to non-violating tuples
Wednesday, August 31, 11



SELECT a,b FROM S 
WHERE a=1;

SELECT a,b FROM S 
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.b!=s2.b);

ALTER TABLE S 
ADD PRIMARY KEY pk1(a) 
ENFORCE;

ALTER TABLE S
DROP PRIMARY KEY;

baS baS

Q
Q’

Query Rewriting Example

•ENFORCE: limits query scope to non-violating tuples
Wednesday, August 31, 11



• Intuition: rewrite independently negative and 
positive part of the query

Negation...

Wednesday, August 31, 11



• Intuition: rewrite independently negative and 
positive part of the query

SELECT a,b FROM S 
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.b!=s2.b);

Q’

...

...

baS

RENAME COLUMN b 
IN S TO x;

xaS

Negation...

Wednesday, August 31, 11



• Intuition: rewrite independently negative and 
positive part of the query

SELECT a,b FROM S 
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.b!=s2.b);

Q’

...

... Q’’
SELECT a,x FROM S
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.x!=s2.x);

baS

RENAME COLUMN b 
IN S TO x;

xaS

Negation...

Wednesday, August 31, 11



• Intuition: rewrite independently negative and 
positive part of the query

SELECT a,b FROM S 
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.b!=s2.b);

Q’

...

... Q’’
SELECT a,x FROM S
WHERE a=1 and NOT EXISTS  
 (SELECT * FROM S as s2 
  WHERE S.a=s2.a AND 
  S.x!=s2.x);

baS

RENAME COLUMN b 
IN S TO x;

xaS

This application of Chase & Back-
Chase is sound but not complete

Negation...

Wednesday, August 31, 11



So far...

• Introduce ICMOs, Adapted SMOs

• Extended Query Rewriting Engine (ICMOs + neg.)

Structural
Evolution

Integrity
Constraints Evolution

Data

Queries

Updates

Wednesday, August 31, 11



• Intuition: reuse query rewriting engine to tackle 
update rewriting

      Update Rewriting (through SMOs)

Wednesday, August 31, 11



• Intuition: reuse query rewriting engine to tackle 
update rewriting

      Update Rewriting (through SMOs)

??

USchema1

Schema2

Wednesday, August 31, 11



• Intuition: reuse query rewriting engine to tackle 
update rewriting

      Update Rewriting (through SMOs)

Q        afterQ        before ==

??

USchema1

Schema2

Wednesday, August 31, 11



Query
Rewriting

Q’        afterQ’        before ==

• Intuition: reuse query rewriting engine to tackle 
update rewriting

      Update Rewriting (through SMOs)

Q        afterQ        before ==

??

USchema1

Schema2

Wednesday, August 31, 11



Query
Rewriting

Q’        afterQ’        before ==

• Intuition: reuse query rewriting engine to tackle 
update rewriting

      Update Rewriting (through SMOs)

Q        afterQ        before ==

??

USchema1

Schema2 U’

Wednesday, August 31, 11



• Intuition: represent updates as (equivalence 
between) queries, exploit query rewriting

Q        before Q        after==U

     A New Update Representation

Wednesday, August 31, 11



• Intuition: represent updates as (equivalence 
between) queries, exploit query rewriting

UPDATE S 
SET b=7 
WHERE a=1;

SELECT a,7 
FROM S 
WHERE a=1;
 UNION
SELECT a,b 
FROM S 
WHERE a!=1;

SELECT a,b 
FROM S;  ==

Q        before Q        after==U

     A New Update Representation

Wednesday, August 31, 11



• Intuition: the policies specify popular special-
cases of view-update problem

       Update Rewriting (through ICMOs)

Wednesday, August 31, 11



• Intuition: the policies specify popular special-
cases of view-update problem

       Update Rewriting (through ICMOs)

•<policy>:
•CHECK: checks constraint before and after 

running update
•ENFORCE: limits update scope to non-violating 

tuples, checks violation-set is not changed
•IGNORE: runs update as-is (allows side effects)

Wednesday, August 31, 11



• Challenge: rewriting complexity depends on mapping 
size (foreign keys and ICMOs make things harder) 

• Solution: extract templates, cache rewritings

Optimization

Figure 5: A) Rewriting scalability vs schema connectivity, B)
Averaged update rewriting time on Ensembl schema evolution

isted, in all our tests.
Rewriting time for updates. An important measure of perfor-

mance of our system is the rewriting time for updates (which sub-
sumes that of queries). This has been the target of various opti-
mization efforts. In Figure 5A, we present the rewriting time of a
typical set of update statements (a mix of updates, deletes, and in-
serts) against a portion of Ensembl evolution history. The test is
performed on the most recent portion of the history, which contains
some of the most relevant evolution steps, and that corresponds to
some of the a public copy of the database [15] that we monitored.

The figure depicts: (i) a baseline approach (which already ac-
counts for the compression technique, and the optimized version of
the UpdateRewrite algorithm), (ii) the effect of our Pruning tech-
nique, (iii) the averaged impact of the template-based cache, and (iv)
the results of applying all of these optimizations. This combination
of optimizations deliver up to 4 orders of magnitude of improvement.

Effect of chains of foreign keys. The newly introduced support
for integrity constraints introduces a new challenge to the scalability
our approach. Schemas containing large number of foreign keys pre-
vent us from pruning aggressively since larger portion of the schema
(the one reachable via foreign keys) might be relevant for the rewrit-
ing. This leads to larger input (constraints+mappings) to the chase.

We set up a synthetic scenario in which we artificially increase
the number of foreign keys, and thus the number of tables reachable
from the query footprint—multiple schema layouts have been tested
as discussed in Appendix E.

Figure 5B shows how the rewriting time grows for increasing lev-
els of connectivity of the schema. The chase-engine we use for
rewriting is also used to optimize the output query (by means of
a procedure known as back-chase [14]). The goal is reducing of the
rewritten query/update execution time. We show the running time of
the system with and without the optimizer turned on. Both solutions
are acceptable for the typical schemas from [10] (typical average
connectivity <5), while the price of optimization becomes evident
for highly connected schemas.

End-to-end validation. We assess the practical applicability of
our system and the effectiveness of our caching scheme on the work-
load of Wikipedia. The experiment is based on the actual work-
loads from the Wikipedia on-line profiler—details in Appendix E.
The system achieves an average overhead of rewriting of about 1ms
thanks to: i) the various optimizations of the rewriting engine, ii)
a cache hit time of < 1ms, and iii) an extremely high hit/miss ra-
tios (> 5k for updates and > 500k for queries) due to the fact
that queries/updates are automatically instantiated by the applica-
tion from a small number of templates. This allows the system to
amortize the cost of rewriting across many query/updates executions.
In order to measure the relative overhead of our solution with re-
spect to execution time, we randomly selected 3000 instances of 3
of the most common queries from the Wikipedia workload, and test
their running time on a locally installed copy of english Wikipedia—
about 3.6TB of data.

Table 3 shows that the overhead of rewriting queries is negligi-

Table 3: Overhead of rewriting
Statements execution time rewriting time overhead
S1 77.37 ms 1 ms 1.29%
S2 21.674 ms 1 ms 4.6%
S3 48.2 ms 1 ms 2.07%

ble, and thanks to longer execution times and comparable rewrit-
ing times the impact on updates is even less significant (typically
<0.1%). This shows that our system delivers performance that are
usable even for latency-critical systems such as Wikipedia.

Finally, as an informal evaluation of usability, we tested with a
group of 3 master students using our operators to model the evolu-
tion histories of several real-world systems. Within a few hours the
student were able to learn the SMO-ICMO language and to precisely
model tens of evolution steps from real-world systems.

6. RELATED WORK
Our work shares its motivation with research on inverting [17, 18]

and composing [25, 16] schema mappings: inversion is needed to
virtually migrate data back from the current schema to the old one,
and composition is needed to do so over several steps in the evolution
history. The main difficulty in these works stems from the expres-
sive power of schema mappings, which leads to the non-existence
of a unique migrated database. This requires evaluating queries un-
der the certain answer semantics over all possible ways to migrate
the database. This evaluation requires materializing a representative
of these possible databases (known as a universal solution), and thus
does not scale to the long evolution histories in our scenarios. In con-
trast, our approach forces a unique way to migrate the database (both
forward and backward) by asking the DB administrator at evolution
time to pick a migration/inversion policy. This allows standard query
answering semantics, and better yet, it allows us to evaluate legacy
queries and updates without migrating data back, by using rewriting
instead. [17, 18] do not consider updates and integrity constraints.

Other related research includes mapping adaptation [32, 33] and
rewriting under constraints [13, 14]. However, these works do not
consider update rewriting, or integrity constraint editing.

Different approaches have addressed the schema evolution prob-
lem from several vantage points. An incomplete list includes: the
methodology of [30], based on the use of views to decouple multiple
logical schemas from an underlying physical schema that has mono-
tonically non-decreasing information capacity—this is not suitable
for our scenario since it is not compatible with evolution steps where
integrity constraints are tightened, nor with changes to the schema
aiming at improve performance by reorganizing schema layout; the
unified approach for propagating changes from the applications to
the database schema of [20], focusing mainly on tracing and syn-
chronizing the changes between applications and database, this meth-
odology requires a significant commitment from DBAs and develop-
ers, which is in contrast to the evolution transparency that we seek in
our work; the application-code generation techniques developed in
[9], that, instead of shielding the applications from the evolution as
we do, aim at propagating the changes from the DB to the applica-
tion layer in a semi-automatic fashion; the framework for metadata
model management [26, 6], that exploits a mapping-like approach
to address various metadata-related problems including schema evo-
lution. None of the above addresses updates under schema and in-
tegrity constraints evolution.

The difficult challenges posed by update rewriting, first elucidated
in classical papers on view update [5, 12], have recently received re-
newed attention. In [8], new approaches were proposed, based on
the notion of DB lenses. Recently, [22] proposed a new approach
to support side-effect-free updating of views. The proposed solution
is based on decoupling the physical and logical layer of a DBMS.
This approach extends the class of updates that can be supported,

123

Ensembl genetic DB Synthetic Dataset

Wikipedia hit/miss ratio: up to 88M
Wednesday, August 31, 11



• Prism++ is a high-performance practical system 
supporting DB schema-evolution:

Conclusion

For More info contact me:
krl@yahoo-inc.com

Structural
Evolution

Integrity
Constraints Evolution

Data

Queries

Updates

Wednesday, August 31, 11

mailto:krl@yahoo-inc.com
mailto:krl@yahoo-inc.com


• Solution: effectiveness of template caching
Wikipedia

Table 6: Caching the Wikipedia workload
Statement type number of avg hit/miss max hit/miss

templates ratio ratio
update 142 5,661.21 80,870
select 1294 248,005.41 88,740,689
select* 610 526,096.72 88,740,689

*with improved template extraction factorizing DB names.

stitution policy (configurable and LFU by default) is not central for
performance since all of the templates typically fit in main-memory.
The cache hit/miss ratio (shown in Table 6) and cache hit time we
measured (< 1ms) for the Wikipedia dataset are very encourag-
ing. This results are derived from the online profiler of Wikipedia
http://tinyurl.com/wikipediaprofiler.

Below we report the 3 queries used for testing execution perfor-
mance.

S1: The query fetching the textual content of an article:

SELECT old_text,old_flags
FROM text
WHERE old_id = "x"
LIMIT 1;

S2: The query fetching all the metadata of a certain revision of
an article):

SELECT rev_id,rev_page,rev_text_id,
rev_timestamp,rev_comment,
rev_user_text, rev_user,
rev_minor_edit,rev_deleted,
rev_len, rev_parent_id,
page_namespace,page_title,
page_latest

FROM page,revision
WHERE (page_id=rev_page) AND

rev_id = "x"
LIMIT 1;

S3: The query fetching the current revision of a page and its meta-
data given the page title):

SELECT rev_id,rev_page,rev_text_id,
rev_timestamp,rev_comment,
rev_user_text, rev_user,
rev_minor_edit,rev_deleted,
rev_len, rev_parent_id,
page_namespace,page_title,
page_latest

FROM page,revision
WHERE page_namespace = "10" AND

page_title = "x" AND
(rev_id=page_latest) AND
(page_id=rev_page)

LIMIT 1;

Table 7: Schema Evolution Tools Comparison

D
B

2
C

M
Ex

pe
rt

O
ra

cl
e

C
M

Pa
ck

M
yS

Q
L

W
or

kb
en

ch

ID
ER

A
SQ

L
C

M

Em
ba

rc
ar

de
ro

C
M

R
ed

G
at

e

D
TM

D
B

Su
ite

Sw
is

SQ
L

Li
qu

ib
as

e

PR
IS

M
++

Doc 3 ? 3 3 3 3 ? 3 3 3
Schema Predict 3 3 5 3 ? ? 3 5 5 3

Transform 3 3 3 3 3 3 3 3 3 3
Reverse 3 3 3 3 3 3 ? 3 3 3

Doc ? ? 3 5 5 3 ? 3 3 3
Data Predict 3 3 ? 5 5 ? 3 5 5 3

Transform 3 3 3 5 5 3 3 3 3 3
Reverse ? ? 3 5 5 3 ? ? 3 3

Query Predict 5 5 5 5 5 5 5 5 5 3
Transform 5 5 5 5 5 ? 5 5 5 3

Update Predict 5 5 5 5 5 5 5 5 5 3
Transform 5 5 5 5 5 5 5 5 5 3

Indexes, Triggers Predict 5 5 5 5 5 5 5 5 5 5
Store Proc., etc. Transform 5 5 5 5 5 5 5 5 5 5

F. SOFTWARE TOOLS COMPARISON
In Table 7 we report a comparison with some of the most popular

tools. The table reports the capabilities of each system to document
(Doc) changes to the various DB objects (schema, data, queries, up-
dates, indexes, etc..), estimate (Predict) what will be the impact of
an evolution step on them, automatically adapt (Transform) various
DB objects to reflect the evolution step, invert the evolution process
(Reverse), e.g., migrating data back or generating inverse schema
transformations. Question marks indicate feature/system combina-
tions for which we could not find enough evidence on whether they
are supported or not. As shown in the table, the existing approaches
support some of the basic features, but fail in providing a complete
end-to-end support. In particular, all the existing tools provided by
DBMS vendors or open source efforts are focused on documenting
and supporting the schema definition and the data migration, but fail
short at supporting queries and updates. The documentation and data
migration capabilities of PRISM++ (not discussed in this paper) are
similar or superior to the one provided by some of the other tools,
while the query and update rewriting technology is not available in
any system we were able to test.

128

Figure 5: A) Rewriting scalability vs schema connectivity, B)
Averaged update rewriting time on Ensembl schema evolution

isted, in all our tests.
Rewriting time for updates. An important measure of perfor-

mance of our system is the rewriting time for updates (which sub-
sumes that of queries). This has been the target of various opti-
mization efforts. In Figure 5A, we present the rewriting time of a
typical set of update statements (a mix of updates, deletes, and in-
serts) against a portion of Ensembl evolution history. The test is
performed on the most recent portion of the history, which contains
some of the most relevant evolution steps, and that corresponds to
some of the a public copy of the database [15] that we monitored.

The figure depicts: (i) a baseline approach (which already ac-
counts for the compression technique, and the optimized version of
the UpdateRewrite algorithm), (ii) the effect of our Pruning tech-
nique, (iii) the averaged impact of the template-based cache, and (iv)
the results of applying all of these optimizations. This combination
of optimizations deliver up to 4 orders of magnitude of improvement.

Effect of chains of foreign keys. The newly introduced support
for integrity constraints introduces a new challenge to the scalability
our approach. Schemas containing large number of foreign keys pre-
vent us from pruning aggressively since larger portion of the schema
(the one reachable via foreign keys) might be relevant for the rewrit-
ing. This leads to larger input (constraints+mappings) to the chase.

We set up a synthetic scenario in which we artificially increase
the number of foreign keys, and thus the number of tables reachable
from the query footprint—multiple schema layouts have been tested
as discussed in Appendix E.

Figure 5B shows how the rewriting time grows for increasing lev-
els of connectivity of the schema. The chase-engine we use for
rewriting is also used to optimize the output query (by means of
a procedure known as back-chase [14]). The goal is reducing of the
rewritten query/update execution time. We show the running time of
the system with and without the optimizer turned on. Both solutions
are acceptable for the typical schemas from [10] (typical average
connectivity <5), while the price of optimization becomes evident
for highly connected schemas.

End-to-end validation. We assess the practical applicability of
our system and the effectiveness of our caching scheme on the work-
load of Wikipedia. The experiment is based on the actual work-
loads from the Wikipedia on-line profiler—details in Appendix E.
The system achieves an average overhead of rewriting of about 1ms
thanks to: i) the various optimizations of the rewriting engine, ii)
a cache hit time of < 1ms, and iii) an extremely high hit/miss ra-
tios (> 5k for updates and > 500k for queries) due to the fact
that queries/updates are automatically instantiated by the applica-
tion from a small number of templates. This allows the system to
amortize the cost of rewriting across many query/updates executions.
In order to measure the relative overhead of our solution with re-
spect to execution time, we randomly selected 3000 instances of 3
of the most common queries from the Wikipedia workload, and test
their running time on a locally installed copy of english Wikipedia—
about 3.6TB of data.

Table 3 shows that the overhead of rewriting queries is negligi-

Table 3: Overhead of rewriting
Statements execution time rewriting time overhead
S1 77.37 ms 1 ms 1.29%
S2 21.674 ms 1 ms 4.6%
S3 48.2 ms 1 ms 2.07%

ble, and thanks to longer execution times and comparable rewrit-
ing times the impact on updates is even less significant (typically
<0.1%). This shows that our system delivers performance that are
usable even for latency-critical systems such as Wikipedia.

Finally, as an informal evaluation of usability, we tested with a
group of 3 master students using our operators to model the evolu-
tion histories of several real-world systems. Within a few hours the
student were able to learn the SMO-ICMO language and to precisely
model tens of evolution steps from real-world systems.

6. RELATED WORK
Our work shares its motivation with research on inverting [17, 18]

and composing [25, 16] schema mappings: inversion is needed to
virtually migrate data back from the current schema to the old one,
and composition is needed to do so over several steps in the evolution
history. The main difficulty in these works stems from the expres-
sive power of schema mappings, which leads to the non-existence
of a unique migrated database. This requires evaluating queries un-
der the certain answer semantics over all possible ways to migrate
the database. This evaluation requires materializing a representative
of these possible databases (known as a universal solution), and thus
does not scale to the long evolution histories in our scenarios. In con-
trast, our approach forces a unique way to migrate the database (both
forward and backward) by asking the DB administrator at evolution
time to pick a migration/inversion policy. This allows standard query
answering semantics, and better yet, it allows us to evaluate legacy
queries and updates without migrating data back, by using rewriting
instead. [17, 18] do not consider updates and integrity constraints.

Other related research includes mapping adaptation [32, 33] and
rewriting under constraints [13, 14]. However, these works do not
consider update rewriting, or integrity constraint editing.

Different approaches have addressed the schema evolution prob-
lem from several vantage points. An incomplete list includes: the
methodology of [30], based on the use of views to decouple multiple
logical schemas from an underlying physical schema that has mono-
tonically non-decreasing information capacity—this is not suitable
for our scenario since it is not compatible with evolution steps where
integrity constraints are tightened, nor with changes to the schema
aiming at improve performance by reorganizing schema layout; the
unified approach for propagating changes from the applications to
the database schema of [20], focusing mainly on tracing and syn-
chronizing the changes between applications and database, this meth-
odology requires a significant commitment from DBAs and develop-
ers, which is in contrast to the evolution transparency that we seek in
our work; the application-code generation techniques developed in
[9], that, instead of shielding the applications from the evolution as
we do, aim at propagating the changes from the DB to the applica-
tion layer in a semi-automatic fashion; the framework for metadata
model management [26, 6], that exploits a mapping-like approach
to address various metadata-related problems including schema evo-
lution. None of the above addresses updates under schema and in-
tegrity constraints evolution.

The difficult challenges posed by update rewriting, first elucidated
in classical papers on view update [5, 12], have recently received re-
newed attention. In [8], new approaches were proposed, based on
the notion of DB lenses. Recently, [22] proposed a new approach
to support side-effect-free updating of views. The proposed solution
is based on decoupling the physical and logical layer of a DBMS.
This approach extends the class of updates that can be supported,

123

Wednesday, August 31, 11



• Intuition: behind the scene Disjunctive Embedded 
Dependencies and chase-based rewritings

Chase & BackChase

Figure 6: The general framework

APPENDIX
A. FORMALIZING IC IMPLICATION

With reference to Figure 6 let ic be an integrity constraint for
schema S2, while I1 and I2 are instances of S1 and S2 respectively.
The notion of constraints implication can be introduced as follows:

DEFINITION A.1. Let IC1 be a set of integrity constraints over
schema S1, and M a mapping from S1 to S2, then we write:
IC1 |=

M

ic iff 8I1, I2(I2 = M(I1) ^ I1 |= IC1 =) I2 |=ic)

The above definition says that the integrity constraint ic on schema
S2 is implied by IC1 under M , if and only if: for every instance
I1 of S1 and I2 of S2 obtained as the mapping of I1 through M ,
the following holds: if I1 satisfies IC1 then I2 satisfies ic. 12 The
notion of closure is naturally obtained as:

DEFINITION A.2. The closure of IC under M is defined:
ICM := {ic | IC |=

M

ic}

Thus, ICM is the set of all integrity constraints implied on S2 by
IC under M . Using this notion of closure, we define the set of all
the integrity constraints IC2 valid on schema S2 as IC2 = ICM

1 .
Applying this definition to each of the structural SMOs defined in
Table 1, we obtain a precise characterization of the impact of struc-
tural SMOs on integrity constraints.

We exploit the modularity offered by the SMOs to achieve iden-
tical results in a programmatic way. In fact, thanks to the indepen-
dence of the actions performed by each SMO in a sequence, we
can derive output constraints observing one SMO at a time, (and
its input constraints). This reduces the general problem to the one
of generating the correct set of output integrity constraints for each
SMO type (and each input set of IC), which is easy to achieve in
practice, thanks to the atomicity of SMOs.

Consider as an example the following input schema S1 with in-
tegrity constraints IC1:

S1 : V (a, b, c)

IC1 : V (a, b, c), V (a, b0, c0) =) b = b0, c = c0

And a forward SMO:

DECOMPOSE V INTO V1(a,b), V2(a,c)

Which transforms schema S1 into the following schema S2:

S2 : V 1(a, b), V 2(a, c)

By applying the Definition 2.2 to IC1 under the logical mapping M
corresponding to the above SMO, we can determine the set of output

12Note that we apply the definition only for the case when M is a
functional mapping. This suffices in our context since we force evo-
lution operators to be invertible (as explained below). In general
however, classical schema mappings [19] may associate several pos-
sible S2-instances with a given S1-instance.

SELECT description 
FROM gene g, g_descr gd 
WHERE g.id=gd.id AND
      g.region=1;

SELECT description 
FROM gene g 
WHERE g.region=1; 

mapping (S2-S3) chase-based
rewriting

rewritten query 
(on S3)

input query 
(on S2)

 JOIN TABLE gene,g_descr 
 INTO gene
 WHERE gene.id=g_descr.id

inverse

DECOMPOSE TABLE gene 
INTO g_descr(id,description), 
     gene(id,type,region,start,end); 

derive mapping

Figure 7: Query Rewriting through SMO.

integrity constraint IC2 to be the following:

IC2 : V 1(a, b), V 1(a, b0) =) b = b0

V 2(a, c), V 2(a, c0) =) c = c0

V 1(a, b) =) 9cV 2(b, c)

V 2(b, c) =) 9aV 1(a, b)

B. QUERY REWRITING THROUGH SMOS
In order to rewrite queries and updates through SMO-based evo-

lution steps, the PRISM++ system: (i) inverts SMO sequences13,
(ii) translates each SMO into an equivalent logical schema mapping
expressed in the language of Disjunctive Embedded Dependencies
(DED) [14], and (iii) rewrites queries using these DEDs by means
of a chase-based algorithm named chase&backchase (C&B) [14].

The C&B algorithm reformulates a query on a schema S1 to an
equivalent query on a schema S2 when the schemas are related by
a schema mapping given as a set of DEDs, and when the integrity
constraints on the two schemas are expressed as DEDs. DEDs are
sufficiently expressive to capture key, foreign key, and all other types
of constraints declared in SQL’s DDL. This process is an extension
of the one discussed in [11], and we only illustrate it by means of
the example in Figure 7.

Figure 7 shows an example of rewriting through operator 3 of
Example 2.2 (i.e., a JOIN SMO). The system automatically inverts
the operator by means of a DECOMPOSE SMO, and derives a logical
mapping between schema versions expressed as DEDs. The DEDs
are fed into the C&B rewriting engine [13] to rewrite the input query
into an equivalent one operating on the new schema, according to
the following semantics:

DEFINITION B.1. A query Q2 on schema S2 is an equivalent
rewriting of query Q1 on S1 if for every instance I2 of S2 the fol-
lowing holds: Q2(I2) = Q1(M

0(I2)).

Here, M 0 is the logical mapping derived from the inverse of the in-
put SMO (e.g., the DECOMPOSE SMO of Figure 7) that conceptually
migrates the instance I2 back to schema S1. In PRISM++, every
SMO step is guaranteed to be information-preserving, thus the in-
verse SMO exists and an M 0 mapping I2 to I1 can easily be derived
as in [11].

We can show the following (which extends the results in [11] to
incorporate integrity constraints on the schemas:

13This process is semi-automatic, and the user is guided by the sys-
tem in the selection –at evolution time, not at query rewriting time–
of the inverse for each SMO [11].

125

Wednesday, August 31, 11



       Update Rewriting through SMO: Example

Table 2: Query-equivalence-based representation of updates
SQL statement query before the update query after

SELECT "1","2","3","4","5"
INSERT INTO exon UNION = SELECT *
VALUES(1,2,3,4,5) SELECT id,type,region,start,end FROM exon

FROM exon
INSERT INTO exon SELECT a,b,c,d,e FROM some table
(SELECT a,b,c,d,e UNION = SELECT *
FROM some table) SELECT id,type,region,start,end FROM exon

FROM exon
DELETE FROM exon SELECT id,type,region,start,end = SELECT *
WHERE id =1 FROM exon WHERE id !=1 FROM exon

SELECT id,type,region,start,"342"
UPDATE exon FROM exon WHERE id =1 = SELECT *
SET end="342" UNION FROM exon
WHERE id =1 SELECT id,type,region,start,end

FROM exon WHERE id !=1

CHECK: the rewriting engine checks that the DB instance I2, sat-
isfies the removed constraint k, e.g., in the first step of Example 2.1
if we apply CHECK policy the system would verify that the exon ta-
ble still satisfies the primary key that has been removed. The original
query/update is executed if the condition is evaluated positively and
an error is returned otherwise—these conditions are implemented as
probe queries, as shown later in Section 4.3 for updates. This policy,
as opposed to the previous one, is very conservative and guarantees
that queries and updates will operate under the exact same assump-
tions under which they were designed (i.e., that the constraint k is
valid in the DB instance). This is common in scenarios in which
the enforcement of some integrity constraints is moved to the ap-
plication level (e.g., some of the foreign keys in the CERN physics
databases [10]). The new applications are designed to enforce the
constraint, while the old applications rely on the DBMS for that.
ENFORCE: the system introduces conditions in the WHERE clause

of queries (and updates) to limit the scope of their actions to the
canonical repair Isat

2 of the DB instance I2 with respect to the re-
moved constraint—no violating tuples are returned in the query an-
swer (or affected by the update execution). This policy allows the
DB instance to partially violate the removed constraint k, limiting
the access of legacy queries and updates to the valid portion of the
instance (as defined by our canonical, non-minimal repair discussed
in Section 3). Let us demonstrate this, concentrating on the first
operator of Example 2.1 that relaxes the primary key pk1 of table
exon. The system semi-automatically generates the inverse ICMO
that virtually re-introduces the primary key as shown in Figure 2.
The DBA is offered to select the enforcement policy for the inverse
ICMO, ENFORCE in Figure 2. The query will be answered on the
portion of table exon still satisfying the removed primary key pk1.
This is achieved by introducing an extra condition, i.e., the NOT
EXISTS clause, in the WHERE clause to exclude from the query an-
swer all the tuples violating the primary key. The algorithm embeds
the constraint check in the query. The automatic generation of such
conditions is possible given the knowledge of the schema and the
constraint being edited, and is rather fast—in our implementation
takes less than 1ms. This policy has wide applicability in many evo-
lution steps we investigated, in which the old applications operate
correctly only when assuming k, while new ones need to violate k.

During the design of the evolution the DBA, based on his/her un-
derstanding of the application needs, selects one of these policies for
each inverse ICMO, this gives the DBA completely control on how
queries and updates will be rewritten through each evolution step.

4.2 Update Rewriting through SMOs
We introduce update rewriting through SMOs by means of the ex-

ample in Figure 3, which demonstrates update rewriting through an
evolution step decomposing table exon10. Figure 3 shows how the

10Note that the evolution is information preserving: (forward) thanks
to the primary key on id, and (inverse) since the system automat-
ically declares the integrity constraints valid in the output schema
(two primary keys on the id columns, and two cross foreign keys)

UPDATE exon SET end="342" WHERE id=1

SELECT id,type,region,start,end 
FROM exon

UPDATE eregion r,etype t SET r.end = "342" 
WHERE r.id=1 AND r.id = t.id

DECOMPOSE TABLE exon 
INTO eregion(id,region,start,end),
      etype(id,type);

logical mapping 

SELECT id,type,region,start,"342" 
FROM exon WHERE id=1
    UNION
SELECT id,type,region,start,end 
FROM exon WHERE id!=1

=   

SELECT r.id,type,region,start,end 
FROM eregion' r, etype' t WHERE r.id = t.id

SELECT r.id,type,region,start,"342" 
FROM eregion r,etype t WHERE r.id =1 AND r.id = t.id
   UNION
SELECT r.id,type,region,start,end 
FROM eregion r, etype t WHERE r.id !=1 AND r.id = t.id

=   

Chase each
query separately

chase-based
rewriting

inverse 

JOIN TABLE eregion,etype
WHERE eregion.id=etype.id

derive mapping 

update to query rep

query to update rep

be
fo
re

af
te
r

be
fo
re

af
te
r

Figure 3: Update Rewriting through SMO.

PRISM++ system, in order to rewrite SQL updates: (i) represents the
input SQL update in an internal format based on queries, a “trick”
that is crucial in allowing us to capitalize on query rewriting technol-
ogy, (ii) rewrites this internal representation through SMO evolution
steps, and (iii) converts the rewriting of the internal representation
back to a regular SQL update.

The query-based representation of updates completely character-
izes the semantics of the update by stating the equivalence of a query
posed on the DB instance before the update with a query posed on
the DB instance after the update. Such equivalence describes the
relationship between the table contents before and after the update.

The before/after equality of Figure 3 states that a scan of the table
after the execution of the update should produce the same answer of
the union of two subqueries posed on the table before the update,
returning the tuples not affected by the update as they are, and the
tuples being updated with functions/constants in the target list cap-
turing the SET action of the update. This kind of representation can
be obtained from any SQL update as shown in Table 2.

The rewriting step (ii) transforms this internal representation valid
on the old schema, to an equivalent one valid on the new schema, by
means of an algorithm we named UpdateRewrite.

Algorithm 1: The rewriting algorithm: UpdateRewrite

Input: U1,M 0

Output: U2

foreach equivalence R 2 U1 do
R

l

= left(R);
R

r

= right(R);
R0

l

=QueryRewrite(R
l

,M 0);
R0

r

=QueryRewrite(R
r

,M 0);
if R0

l

= ø or R0
r

= ø then
fail();

end
U2 = U2 [ (R’

l

= R0
r

)
end

UpdateRewrite rewrites each query in the equivalence indepen-
dently, by means of QueryRewrite (the extension handling nega-
tion of our query rewriting algorithm, summarized in Appendix B),
and produces a similar representation valid under the new schema.
Algorithm UpdateRewrite assumes U1 to be expressed as a set
of equivalences between queries on DB instances, and produces an

121

Wednesday, August 31, 11



  Update Rewriting ICMOs: Example

equivalent U2 in the same format.
The final step (iii) translates this internal representation back to

an SQL update statement. This process consists in analyzing the
target lists, FROM and WHERE clauses of the queries and reconstruct
the corresponding SQL DDL statement(s) valid on the new schema
show in Figure 3—details in Appendix D.3. The resulting update
satisfies the semantics from view-update literature [5, 12]:

DEFINITION 4.1. An equivalent rewriting U2 under schema S2

(with integrity constraints IC2) of the original update U1 under
schema S1 (with integrity constraints IC1) satisfies the following
property: U1(M

0(I2)) = M 0(U2(I2))

Thanks to the invertibility of both M and M 0, this leads to a con-
structive definition of the update on S2 as follows:

U2 = M(U1(M
�1(I2))).

Based on it, we can make the following claim about algorithm
UpdateRewrite (in short, we say that UpdateRewrite is sound):

THEOREM 4.1. Let M denote a mapping between schemas S1

and S2, with inverse M 0. Then, for every update U1 under schema
S1, a successful execution of UpdateRewrite on U1, M and M 0

produces an update U2 under S2 such that: U2 = M � U1 �M 0.
See Appendix C for the proof of Theorem 4.1.

4.3 Update Rewriting through ICMOs
Once again, tightening of integrity constraints is not challeng-

ing for rewriting (since the DBMS enforces a stricter set of con-
straints IC2 = IC1 + k), while relaxing integrity constraints re-
quires attention—legacy updates need to be rewritten to operate on a
database for which the DBMS only enforces less restrictive integrity
constraints (IC2 = IC1 � k). Update rewriting through ICMOs is
similar to the rewriting of queries described early in this section. The
key difference is that on top of the conditions checked for queries,
updates require extra conditions to verify the compliance of the DB
instance with the (old) constraints after the statement is executed. In
the following, we refer to Iviol

2 as the portion of the DB instance I2

that violates the (dropped) constraint k.
We discuss here only the extra conditions introduced for updates

for each enforcement policy:
IGNORE: no checks are performed, and the update statement is

executed as-is on the new schema, i.e., Iviol

2 might be not empty,
and might be affected by the update. This implies potential side
effects, the semantic of update execution is not the original one. In-
tuitively this represents the “natural” extension of the update effect
on the new schema. The DBA is warned and instructed by the sys-
tem interface on the effect of this policy. This scenario is common in
practice, where changes to the integrity constraints are not reflected
into changes to updates, and is thus a must-have in our system.
CHECK: PRISM++ checks that the constraint k is satisfied by the

DB instance also after the update execution, i.e., U2(I2) |= k. This
is done by issuing queries before the update execution that check
both conditions, and executing the update only if both are satisfied.
As an example, consider Figure 4, where we rewrite an INSERT
statement through the same evolution of Figure 2, but with CHECK
policy for the inverse ICMO. The system checks pre and post con-
ditions, automatically derived by analyzing the input statement, to
guarantee that the content of table exon respects the primary key,
both before and after the execution of the update.
ENFORCE: The system checks that the set of tuples violating the

constraints is not change by the execution of the update. This check
is performed issuing boolean queries generated by analyzing the in-
put statement, in a fashion similar to what was discussed above for
CHECK. The formal requirement verified by the system is that:

Iviol

2 = U2(I2)
viol.

INSERT INTO exon VALUES (1,2,3,4,5)

ICMO
rewriting

ALTER TABLE exon 
DROP PRIMARY KEY pk1

inverse

ALTER TABLE exon 
ADD PRIMARY KEY pk1(id) 
CHECK

@pre = SELECT * FROM exon e,exon e2
       WHERE e.id=e2.id AND e.rank=e2.rank AND
            (e.type!=e2.type OR e.start!=e2.start OR e.end!=e2.end);
@post = SELECT * FROM exon e WHERE e.id=1; 

IF(isempty(@pre)&& isempty(@post)) INSERT INTO exon VALUES(1,2,3,4,5)
ELSE RETURN ERROR;

Figure 4: Update Rewriting through ICMO: CHECK.

5. OPTIMIZATION AND EVALUATION
The PRISM++ system has been implemented in Java and is loosely

based on our prior system [11], but the rewriting engine has been
completely redesigned to handle updates, integrity constraints and
queries with negation and functions. The rewriting time perfor-
mance of our system is a critical metric for success in practical sce-
narios. Significant effort has been devoted to speed-up the rewriting
time for updates, and for schema containing many foreign keys.

PRISM++ computes the rewriting of queries and updates by ap-
plying the combination of algorithms described in this paper. While
the newly introduced rewriting through ICMOs is really fast, the
rewriting through SMOs of both queries and updates relies on the
procedure called the chase [13], that even in the very optimized im-
plementation we use [14] is intrinsically expensive. The execution
time of the chase is dominated by the size of its input, which in-
cludes the integrity constraints from each schema version and a log-
ical mapping between schemas that PRISM++ derives automatically
from our operators. Thus, to achieve performance we try to contain
the size of the chase input.

The key optimizations that make PRISM++ practical include: i)
an adaptation of the mapping compression approach of [11] (exploit-
ing composition to reduce the size of the chase input), ii) a mapping
pruning technique, extending the basic principle sketched in [29],
that removes from the input to the chase mappings and integrity con-
straints not relevant for the rewriting of a given query/update, iii) an
optimization of the basic UpdateRewrite algorithm we presented,
that caches partial rewritings of the various queries it processes, and
iv) a more sophisticated caching technique that caches rewritings for
user queries/updates whenever they share a template (i.e., when they
have similar structures but different parameters). These optimiza-
tions are discussed in details in Appendix D, while their impact on
performance is discussed next.

In the following, we report an evaluation of the system against ac-
tual evolution histories from [10] and synthetic cases—Appendix E
provide more details on all of these experiments. Among the many
evolution histories we selected the two representative test cases of
Wikipedia and Ensembl DB. The choice was due to: i) their pop-
ularity and ii) to the fact that for these two systems we have the
complete databases and real workloads—a log of 10% of the access
to the actual Wikipedia website for almost 4 months, and a complete
log of the workload generated by hundreds of biologists against the
Ensembl DB [15] for over 2 months11.

To test the practical relevance of our system, we tested a set of
120 SQL statements (queries and updates) from the actual work-
loads of Wikipedia and Ensembl, (i) against each operator (SMO
and ICMO), (ii) through short artificial sequences of operators and
(iii) through portions of the evolution histories of Wikipedia and
Ensembl. The system found a correct rewriting, whenever one ex-

11We release the two datasets at: http://db.csail.
mit.edu/wikipedia/ and http://db.csail.mit.edu/
ensembldb/

122

Wednesday, August 31, 11


