

DATA IS DEAD ... WITHOUT "WHAT-IF" MODELS

Peter J. Haas, Paul P. Maglio, Patricia G. Selinger, and Wang-Chiew Tan IBM Almaden Research Center

© 2011 IBM Corporation

BUT: Why do enterprises care about data in the first place?

inf<mark>orms</mark> online

Analytics Section

Overview

The Analytics Section of INFORMS is focused on promoting the use of data-driven analytics and fact-based decision making in practice. The Section recognizes that analytics is seen as both (i) a complete business problem solving and decision making process, and (ii) a broad set of analytical methodologies that enable the creation of business value. To this purpose, the Section promotes the integration of a wide range of analytical techniques and the end-to-end analytics process. It will support activities that illuminate significant innovations and achievements in specific steps and/or in the execution of the process as a whole, where success is defined by the impact on the business.

We recognize that analytics is defined by three categories:

Descriptive analytics

- Prepares and analyzes historical data
- Identifies patterns from samples for reporting of trends

Predictive analytics

- Predicts future probabilities and trends
- Finds relationships in data that may not be readily apparent with descriptive analysis

Prescriptive analytics

- Evaluates and determines new ways to operate
- Targets business objectives
- Balances all constraints

Allocation of scarce resources

informs online

Analytics Section

Overview

The Analytics Section of INFORMS is focused on promoting the use of data-driven analytics and fact-based decision making in practice. The Section recognizes that analytics is seen as both (i) a complete business problem solving and decision making process, and (ii) a broad set of analytical methodologies that enable the creation of business value. To this purpose, the Section promotes the integration of a wide range of analytical techniques and the end-to-end analytics process. It will support activities that illuminate significant innovations and achievements in specific steps and/or in the execution of the process as a whole, where success is defined by the impact on the business.

We recognize that analytics is defined by three categories:

Descriptive analytics

- Prepares and analyzes historical data
- Identifies patterns from samples for reporting of trends

Predictive analytics

- Predicts future probabilities and trends
- Finds relationships in data that may not be readily apparent with descriptive analysis

Prescriptive analytics

- Evaluates and determines new ways to operate
- Targets business objectives
- Balances all constraints

"Analytics is...a complete business problem solving and decision making process"

Allocation of scarce resources

inf<mark>orms</mark>online

Analytics Section

Overview

The Analytics Section of INFORMS is focused on promoting the use of data-driven analytics and fact-based decision making in practice. The Section recognizes that analytics is seen as both (i) a co-tiplete business problem solving and decision making process, and (ii) a broad set of analytical methodologies that enable the creation of business value. To this purpose, the Section promotes the integration of a wide range of analytical techniques and the end-to-end analytics process. It will support activities that illuminate significant innovations and achievements in specific steps and/or in the execution of the process as a whole, where success is defined by the impact on the business.

We recognize that analytics is defined by three categories

Descriptive analytics

- Prepares and analyzes historical data
- Identifies patterns from samples for reporting of trends

Predictive analytics

- Predicts future probabilities and trends
- Finds relationships in data that may not be readily apparent with descriptive analysis

Prescriptive analytics

- Evaluates and determines new ways to operate
- Targets business objectives
- Balances all constraints

"Analytics is...a complete business problem solving and decision making process"

Allocation of

scarce resources

Descriptive Analytics: Finding patterns and relationships in historical and existing data

Analytics Section

informs online

Overview

The Analytics Section of INFORMS is focused on promoting the use of data-driven analytics and fact-based decision making in practice. The Section recognizes that analytics is seen as both (i) a contribute business problem solving and decision making process, and (ii) a broad set of analytical methodologies that enable the creation of business value. To this purpose, the Section promotes the integration of a wide range of analytical techniques and the end-to-end analytics process. It will support activities that illuminate significant innovations and achievements in specific steps and/or in the execution of the process as a whole, where success is defined by the impact on the business.

We recognize that analytics is defined by three cated

Descriptive analytics

- Prepares and analyzes historical data
- Identifies patterns from samples for reporting of trends

Predictive analytics

- Predicts future probabilities and trends
- Finds relationships in data that may not be readily apparent with descriptive analysis

Prescriptive analytics

- Evaluates and determines new ways to operate
- Targets business objectives
- Balances all constraints

"Analytics is...a complete business problem solving and decision making process"

Allocation of

Descriptive Analytics: Finding patterns and relationships in historical and existing data

Predictive analytics: predict future probabilities and trends to allow what-if analysis

© 2011 IBM Corporation

inf<mark>orms </mark>online

Analytics Section

Overview

The Analytics Section of INFORMS is focused on promoting the use of data-driven analytics and fact-based decision making in practice. The Section recognizes that analytics is seen as both (i) a co-triete business problem solving and decision making process, and (ii) a broad set of analytical methodologies that enable the creation of business value. To this purpose, the Section promotes the integration of a wide range of analytical techniques and the end-to-end analytics process. It will support activities that illuminate significant innovations and achievements in specific steps and/or in the execution of the process as a whole, where success is defined by the impact on the business.

We recognize that analytics is defined by three categories

Descriptive analytics

- Prepares and analyzes historical data
- Identifies patterns from samples for reporting of trends

Predictive analytics

- Predicts future probabilities and trends
- Finds relationships in data that may not be readily apparent with descriptive analysis

Prescriptive analytics

- Evaluates and determines new ways to operate
- Targets business objectives

Balances all constraints

"Analytics is...a complete business problem solving and decision making process"

Descriptive Analytics: Finding patterns and relationships in historical and existing data

Predictive analytics: predict future probabilities and trends to allow what-if analysis

Prescriptive analytics: deterministic and stochastic optimization to support better decision making

Shallow versus deep predictive analytics

Extrapolation of 1970-2006 median U.S. housing prices

NCAR Community Atmosphere Model (CAM)

3.3 Eulerian Dynamical Core

$$\frac{\partial \zeta}{\partial t} = \mathbf{k} \cdot \nabla \times (\mathbf{n}/\cos\phi) + F_{\zeta_{H}},$$

$$\frac{\partial \delta}{\partial t} = \nabla \cdot (\mathbf{n}/\cos\phi) - \nabla^{2}(E + \Phi) + F_{\delta_{H}},$$

$$\frac{\partial T}{\partial t} = \frac{-1}{a\cos^{2}\phi} \left[\frac{\partial}{\partial\lambda}(UT) + \cos\phi \frac{\partial}{\partial\phi}(VT) \right] + T\delta - \dot{\eta}\frac{\partial T}{\partial\eta} + \frac{R}{c_{p}^{*}}T_{v}\frac{\omega}{p} + Q + F_{T_{H}} + F_{F_{H}},$$

$$\frac{\partial q}{\partial t} = \frac{-1}{a\cos^{2}\phi} \left[\frac{\partial}{\partial\lambda}(Uq) + \cos\phi \frac{\partial}{\partial\phi}(Vq) \right] + q\delta - \dot{\eta}\frac{\partial q}{\partial\eta} + S,$$

$$\frac{\partial \pi}{\partial t} = \int_{1}^{\eta_{t}} \nabla \cdot \left(\frac{\partial p}{\partial \eta} V \right) d\eta.$$

Is the DB community truly helping decision makers?

Some realizations...

Data is **dead**

Name	Item	Price	Date
Pat	Red shoes	\$50	1/23/11

...a record of history that says nothing about future or hypothetical worlds

Descriptive analytics & shallow predictive analytics are last resorts for decision making

(When you can't find the domain experts)

...but are the main focus of most database and IM technology

We can understand much more by moving to deep predictive analytics based on **models and data**

$$\begin{array}{rcl} \textbf{3.3} & \textbf{Eulerian Dynamical Core} \\ \frac{\partial \zeta}{\partial t} &= \boldsymbol{k} \cdot \nabla \times (\boldsymbol{n}/\cos \phi) + F_{\zeta_H}, \\ \frac{\partial \delta}{\partial t} &= \nabla \cdot (\boldsymbol{n}/\cos \phi) - \nabla^2 (E + \Phi) + F_{\delta_H}, \\ \frac{\partial T}{\partial t} &= \frac{-1}{a \cos^2 \phi} \left[\frac{\partial}{\partial \lambda} (UT) + \cos \phi \frac{\partial}{\partial \phi} (VT) \right] + T\delta - \dot{\eta} \frac{\partial T}{\partial \eta} + \frac{R}{c_p^*} T_v \frac{\omega}{p} \\ &\quad + Q + F_{T_H} + F_{F_H}, \\ \frac{\partial q}{\partial t} &= \frac{-1}{a \cos^2 \phi} \left[\frac{\partial}{\partial \lambda} (Uq) + \cos \phi \frac{\partial}{\partial \phi} (Vq) \right] + q\delta - \dot{\eta} \frac{\partial q}{\partial \eta} + S, \\ \frac{\partial \pi}{\partial t} &= \int_1^{\eta_t} \boldsymbol{\nabla} \cdot \left(\frac{\partial p}{\partial \eta} \boldsymbol{V} \right) d\eta. \end{array}$$

We can understand much more by moving to deep predictive analytics based on **models and data**

$$\begin{array}{rcl} \textbf{3.3} & \text{Eulerian Dynamical Core} \\ \frac{\partial \zeta}{\partial t} &=& \boldsymbol{k} \cdot \nabla \times (\boldsymbol{n}/\cos \phi) + F_{\zeta_H}, \\ \frac{\partial \delta}{\partial t} &=& \nabla \cdot (\boldsymbol{n}/\cos \phi) - \nabla^2 (E + \Phi) + F_{\delta_H}, \\ \frac{\partial T}{\partial t} &=& \frac{-1}{a \cos^2 \phi} \left[\frac{\partial}{\partial \lambda} (UT) + \cos \phi \frac{\partial}{\partial \phi} (VT) \right] + T\delta - \dot{\eta} \frac{\partial T}{\partial \eta} + \frac{R}{c_p^*} T_v \frac{\partial}{p} \\ &\quad + Q + F_{T_H} + F_{F_H}, \\ \frac{\partial q}{\partial t} &=& \frac{-1}{a \cos^2 \phi} \left[\frac{\partial}{\partial \lambda} (Uq) + \cos \phi \frac{\partial}{\partial \phi} (Vq) \right] + q\delta - \dot{\eta} \frac{\partial q}{\partial \eta} + S, \\ \frac{\partial \pi}{\partial t} &=& \int_{-1}^{\eta_t} \boldsymbol{\nabla} \cdot \left(\frac{\partial p}{\partial \eta} \boldsymbol{V} \right) d\eta. \end{array}$$

Data-centrism is **WRONG**:

Exploit expert knowledge of fundamental structure, causal relationships, and dynamics of system constituents to create first-principles simulation models

Especially true for complex systems-of-systems

Huang, T. T, Drewnowski, A., Kumanyika, S. K., & Glass, T. A., 2009, "A Systems-Oriented Multilevel Framework for Addressing Obesity in the 21st Century," Preventing Chronic Disease, 6(3).

Challenge: Facilitating integration of existing simulation models, statistical models, optimization models, and datasets for what-if analysis

Especially true for complex systems-of-systems

Huang, T. T, Drewnowski, A., Kumanyika, S. K., & Glass, T. A., 2009, "A Systems-Oriented Multilevel Framework for Addressing Obesity in the 21st Century," Preventing Chronic Disease, 6(3).

Challenge: Facilitating integration of existing simulation models, statistical models, optimization models, and datasets for what-if analysis

Making such integration feasible, practical, flexible, attractive, cost-effective, and usable

© 2011 IBM Corporation

An example of a models-and-data approach: Splash

Loose model coupling through data exchange

Multi-disciplinary users

Splash composite obesity model (proof of concept)

Database research++

■ Data search → model-and-data search

- Find compatible models, data, and mappings (using metadata)
- Involves semantic search technologies, repository management, privacy and security

■ Data integration → model integration

- Simulation-oriented data mapping
- Time, space, unit alignment [e.g., Howe & Maier 2005]
- Hierarchical models with different resolutions
- Complex data transformations (e.g., raw simulation output to histogram)

- Optimally configure workflow among distributed data and models
- Factoring common operations across different mappings in the workflow
- Avoiding redundant computations across experiments
- Statistical issues: managing pseudorandom numbers and Monte Carlo replications

eHarmony[®]

Database research++ (continued)

Causality approximation

- Fixed-point + perturbation approaches
- System support
- Theoretical support

Deep collaborative analytics

- Visualizing and mining the results
- Understanding and explaining results:
 - Dashboarding of parameters
 - Provenance [e.g., J. Friere et al.]
 - Root-cause analysis
 - Sensitivity analysis
- Trusting results
 - Model validation
 - ManyEyes++, Swivel++

Other models-and-data research : MCDB [Jermaine et al.], BRASIL [Gehrke et al.]

Conclusion

- DB community has focused on descriptive analytics, but enterprises need deep predictive analytics for what-if analysis, based on expert understanding of underlying mechanisms
- Models and data need to be brought together on an equal footing
- Requires significant extensions of database technology (exciting research opportunities!)
- Opportunity to redefine ourselves as the model-and-data community

In short:

DATA IS DEAD ... WITHOUT "WHAT-IF" MODELS

Peter J. Haas, Paul P. Maglio, Patricia G. Selinger, and Wang-Chiew Tan IBM Almaden Research Center

Thanks to the Splash team: Melissa Cefkin, Susanne M. Glissmann, Cheryl A. Kieliszewski, Yinan Li, and Ronald Mak

www.almaden.ibm.com/asr/projects/splash